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Internal morphology of mineral crystals as clue to
their growth histories. 1. Growth kinematics

Ilia Vesselinov

Abstract. Measurements of edge trajectories (sector boundaries) in oriented crystal sections provide quan-
titative information about the growth histories of minerals but the methods for deriving and analyzing
such data are poorly developed. This study treats internal morphological patterns in terms of an inverse
problem in growth kinematics and describes a procedure for computer modelling of measured patterns.
Edge trajectories, which record the variations of growth rate ratios of adjacent faces in time, are modelled
by four types of absolute rate functions representing decelerating, constant-rate, accelerating and oscilla-
tory growth modes. They are illustrated with analyses of the few measured patterns available in the liter-
ature. Straight trajectories like those described in accessory zircon from granitoids demonstrate the evo-
lution of stationary growth forms during mineral formation. A hyperbolic pattern recorded in authigenic
albite from limestone illustrates processes which do not produce stationary forms. A parabolic hourglass
structure in titanaugite phenocryst demonstrates the significance of internal growth morphologies for
understanding the processes in magma bodies. Oscillatory patterns are natural time-scaling indicators
and, in addition, structures like that in a crystal of hydrothermal arsenopyrite provide key information
about related compositional variations. Growth kinematics of crystals provides abundant clues constrain-
ing the inferred conditions of mineral formation.
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Becenuuos, M 1998 Brrpemnara MOpHOJOrHs Ha KPUCTAIHTE HA MUHEPAITHTE KATO HHIUKATOD
Ha mporecuTe Ha pacrexa uM, [. Kunematuka. - eoxum., munepaa. u nempoa., 34, 3-14

M3MmepRaHeTO Ha TPacKTOPHUTE HA KPUCTANHATE PBOOBE (CEKTOPHUTE TPAHAIIN) B OPHCHTUPAHH MIpepe-
3 JaBa KOJHMYECTBCHA MHPOPMALHA 33 pacTeka HA MHHEPAINTE, HO METOAUTE 324 W3BJINMYAHE ¥ AHAJH3H-
pane Ha Takupa HaHHHU ca ciabo passurd. Hacrosmara paborta pasriexia BbTPENTHATE MOPQOJIOKKH
CTPYKTYPH B paMKHTE Ha eHa o0paTHA KMHEMAaTHYHA 3a7a4a W Ipeniara mpouenypa 3a KOMIIOTBPHOTO
HM Mojlenupane. PrOHUTE TpaeKTOpUH, QUKCHpad H3MEHEHWATA Ha OTHOMIEHHATA Ha abCONFOTHHUTE
CKOPOCTH HAa ChCENHHTE CTEHW BBB BPEMETO, C€ MOLENMPAT TOCPENCTBOM YETHPH TUTa (YHKIHH B
pPEXUMH HA HAMAISABAIIH, IOCTOSHHH, PACTALIH M IIEPHOIHMYHO H3MCHSIIN CE CKOPOCTH Ha pacTex. Te ca
WJIIOCTPHPAHH C aHAJIM3H Ha MajKOTO M3MEPEHH CTPYKTYpH, OyONUKyBaHH B JHTeparyparta. Ilpasonu-
HEHHUTE TPACKTOPHUHU, KATO ONUCAHHUTE B AKNCCOPHHUSA HUPKOH OT IPAaHUTOHIH, ITOKA3BAT €BOJIOIUATA Ha
CTalMOHAapHUTE (JOPMU Ha pacTexX IIpH MUHepanoobpasysanero. ExHa xunepbonuyHa CTPYKTYpA, ONHU-
CaHa B ayTUIeHCH aJOHT OT BapOBHIY, HIIOCTPHpA MPOMIECH, IIPU KOMTO CTAMOHAPHM (dopMu HE ce
obpasysaT. C eqna mapabonnyna CTPYKTypa B HOphHpEN THTAHABIUT € [TOKA3aHO 3HAYEHUETO HA BBT-
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pernHaTa MOp(OTOTHS 32 THIKYBAHE HA LPOIECHTE B MarMeHd Tesia. OCHUNANMOHHATE TPAEKTOPHH ca
ECTECTBEHH “4aCOBHHIM M OCBCH TOBAa CTPYKTYPH KATO TA3U B €IUH KPHCTAJN HA XUAPOTEPMANICH apce-
HOIMPHT AaBaT KJIIOUOBa WH(POPMALMS 32 CBLP3aHUTE CHC CKOPOCTTA HA pacTeX W3MEHEHUS B ChCTABa.
B xuEeMaTuxaTa Ha KPHCTANHHS PAcCTeX ce KpHIT OOMNHY JaHHY 32 THJIKYBaHE HA YCAOBHMITA Ha

MuHepanoobpasypaHe.

Kawuosu dymu: KpUCTaJeH pacTex, KHHEMATHKA, CEKTOPHA 30HAIHOCT
Aodpec: I'eonoruyeckn UHCTUTYT, brarapcka akaneMusa Ha Haykute, 1113 Codus

Introduction

Mineral kinetics has increasingly drawn the
attention of researchers during the recent
years and voluminous information has been
gained by studying the internal inhomo-
geneities of mineral crystals. So far, howev-
er, the efforts have been concentrated on
their compositional characteristics, size dis-
tributions, etc. (e.g. Holten et al., 1997;
Cashman, 1990) while the geometry of pat-
terns, such as those of concentric and sector
zoning, has been largely neglected. It is well
known (Sunagawa, 1987) that both types of
zoning reflect the evolution of crystal
shapes during growth and that an external
morphology can be treated as formed of the
bases of growth pyramids whose lateral sur-
faces extend into the interior along the tra-
jectories of crystal edges producing an
internal morphological pattern from which
the geometry of a crystal can be traced back
in time to its origin. In 1948, Laemmlein
derived the basic relation of internal mor-
phology in the form V,/V, = siny,/siny,
where V.V, are the growth rates of any two
adjacent flat faces of a crystal along their
normals at a glven moment, and Yy, Yy are
the angles which they make with the com-
mon surface of their growth pyramids and
which, in sections perpendicular to the zone
axis, are the angles between the face pro-
jections and the trajectory of the interfacial
edge during growth. Since edge paths in
crystal sections can be measured in many
mineral specimens, it may be seen that
Laemmlein’s relation shows the means of
gaining direct quantitative information
about crystal growth kinematics as a basis
for a better understanding of growth kinet-
ics, 1.e. of the factors that governed mineral
crystalhzatlon in processes of the past. Tt
should be emphasized again that few stud-
ies, to be discussed further on, have made
limited use of that important source of
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information. As a result, the description and
analysis of kinematic patterns are still poor-
ly developed.

In a previous study (Vesselinov, 1997), a
procedure has been proposed for routine
preparation of crystal sections perpendicu-
lar to desired zone axes. Measurements of
edge trajectories in such oriented sections
overcome a serious problem in quantifying
internal morphologies and permit to study
them on the basis of Laemmlein’s relation.
As will be shown, however, a meaningful
analysis of such data requires tests of vari-
ous growth hypotheses producing mor-
phologies to be compared with the mea-
sured patterns, i.e. one should be able to
»grow” hypothetical crystals using the kine-
matic information derived. For the purpose
the SHAPE 5.0 crystal-drawing computer
program of Dowty (1995) has been used as
an invaluable tool in this study. Its option
~oections and Growth Rates” is designed
exactly for this kind of problems and has
made it possible to model and illustrate all
kinematic patterns discussed here.

The first part of this study presents an
analysis of internal morphological patterns
in terms of an inverse problem in growth
kinematics and tries to generally outline the
scope of information that can be gained by
measuring the patterns and expressing edge
paths in quantitative terms. The second part
examines some kinetic implications of kine-
matic results.

Edge trajectories and their
measurement

Obviously, in order to be measured edge
paths should first be made visible in the
given crystal section. Present-day tech-
niques (optical microscopy, BSE-imaging,
cathodoluminescence, etching, etc.) open
up many possible ways of exposing or trac-



ing out edge paths, and in the following the
latter will be treated as fully exposed. It
should be noted that the degree of exposure
itself contains information about the abso-
lute rates at which growth has taken place.
‘This i1s illustrated in Fig.1a,b,c which is a
sketch of three cases commonly observed in
BSE-images of compositional inhomo-
geneities. Fig. 1a shows a perfectly homo-
geneous section with non-observable edge
paths, in Fig. 1b a homogeneous core is sur-
rounded by a zoned rim with traceable edge
paths along the successive corners of time-
equivalent zones, and in Fig. 1c the rim
shows well defined sector boundaries
between symmetrically non-equivalent
faces. As will be shown in Part II of this
study, the presence or absence of sector
boundaries in a section puts valid con-
straints on the absolute growth rates of the
crystal which in this example, under other-
wise equal conditions, would be higher in
Fig. 1c than in Fig. 1ab.

All trajectories are treated here (Fig. 1d)
as starting from the original seed where
growth began at zero time. In practice,
however, section planes cut the growth
pyramid structure either below or above its

origin exposing only parts of the edge path
patterns along the perpendicular zone axes
and the position of the origin in such cases
is poorly defined. For this reason, external
outlines of sections generally provide a bet-
ter frame of reference and 1t i1s recommend-
able 10 measure patterns from the outline
towards the centre of sections. LLaemmlein’s
relation also uses the angles with the face
projections rather than those with the face
normals. Such a procedure would require
recalculation of measured values to bring
them to a common origin but this technical
problem will not be discussed.

The shapes of edge trajectories, whole
or partial, may be conveniently grouped
into three categories: straight, curved and
undulating (Fig. 1d). They are defined at
any poimnt by Laemmlein’s angles w,, v,
related as y,+vy, =180-¢, where 0<(p<180
is the interfacidl angle of the faces x.y.
Laemmlein’s relation means that the trajec-
tory curves away from the slower growing
face (Laemmlein, 1948) and that at y,=0
the face x stops growing whereas at
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Fig. 1. Sections, edge trajectories and their significance: a
- homogeneous section; b - traceable edge paths; ¢ - sec-
tor boundaries between faces not related by symmetry; 4
- straight (1), curved (2) and undulating (3) edge trajec-
tories; e - growth events marked by the changes of direc-
tions of edge paths

@ur. 1. [pepesu, prOBY TPACKTOPHE H 3HAYCHHETO WM !
a - eAHOPOAEH npepe3; b - pLOHU TPAEKTOPWH, MapKupa-
HM OT KOHIEHTPHYHA 30HANHOCT; ¢ - CeKTOPHH IPaHHNH
MEX[IY CTEHH, HECBBP3aHH ChC CHMETPHYHH €JIEMEHTH;
d - mpapoaudeitan (1}, kpuponuueiing (2) ¥ BLIHOBHIHK
(3) PEOHM TPACKTOPME; ¢ - CHOMTHAM 1O BPEME Ha pacTe-
Ka, MApKAPEHA OT TPOMEHUTE B NOCOKATA Ha PHLOHHTE
TPaeKkTOpH

v, =(180-¢p) the same happens with the face
y. Since we discuss growth forms only, i.e.
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their rates are V,20, V20 at any moment, it
follows O<y, <(180 ®), or (180-¢)=y,20. In
Fig. 14, (180-(p) is designated as growth
angle to emphasize the fact that it restricts
the variations of the trajectory tangent dur-
ing growth as well as the area of a section
polygon within which the edge projection
may advance. In Fig. le, the three types of
internal morphological patterns are
expressed in kinematic terms as follows
from Laemmlein’s equation. Any change in
direction of these lines can be treated as
marking some event in the growth history of
the crystal, and the figure illustrates three
entirely different sequences of events end-
ing in identical external morphologies. An
important case of edge path geometry is not
illustrated here (examples may be seen in
the section on oscillatory patterns) in order
to avoid excessive details but it needs men-
tioning because it shows the effect of the
relative magnitudes of growth angles on
edge path patterns. If a face grows between
two other faces and the sum of the two
adjacent interfacial angles is smaller than
180, then the sum of the respective growth
angles will be larger than 180 and they will
overlap. The smaller the interfacial angles
the larger the overlap of growth angles.
Inside its area the two edge paths may meet,
i.e. the face in between may disappear, to
be replaced by a single-edge trajectory
defined by the other two faces. Such an
event (or inversely, the appearance of a new
face between the two faces) will happen at
a definite value of the rate ratio of the cen-
tral face relative to the side faces marking a
significant change in growth morphology.
In a section polygon, the probability of
coming across such events increases with
the increasing number of faces in the zone
because more and more growth angles will
overlap.

The trajectory of an interfacial edge dur-
ing growth (Fig. 1d) can be defined as a
function r, = f(1,), or as its inverse function,
relating the variations of the central dis-
tances of faces. In the natural co-ordinate
system of a crystal section perpendicular to
its zone axis it can be measured in two con-
venient ways. Sequences of well defined
straight lines (curve 1, Fig. 1d) can be

expressed by central distances r, and the
respective angles y,. In more comphcated
cases (Vesselinov, Kerestedjian, 19995),
measurement of r, and the distance w, from
the face normal to the edge is more practi—
cable. Further on we shall assume that edge
paths are measurable with any desired
accuracy. Simple geometric relations give
I,= cosp.r, + sing.w, and dr,/dr, = cos¢ +
sin@(dw,, /dr) = cosp + sm(p cotgy, at any
point along the trajectory. Since it is also
valid dr,/dr,=(dr,/dt)/(dr,/dt), Laemmlein’s
equanon can be rewritten as V/V, =
smwy/smwx—(dr /dt)/{dr,/dt)=cosp+
sinp(dw,/dr,) = F,, at any moment t, and
the problem can be redefined as an inverse
kinematic problem in which the functions
r,=f(t) and r, = f,(t) are to be sought if the
growth rate ratio f;/mctzon (dr,/dt)/(dr,/dt)=
Fy, 18 known from meastirements. Of
course, with the exception of zero rates, the
edge trajectories F,, give no information
about the absolute growth rates of faces.

It is quite evident that in order to solve
the problem one has to know, ideally, at
least one r vs. t function. Yet, if it is cor-
rectly found, even in arbitrary, not absolute
time units, the evolution of the entire
growth morphology can be traced back
from the set of all edge trajectories in a
crystal. A search for functions, based on
crystal growth theories, laboratory experi-
ments and observations in nature, would
necessarily require checking up the results
against the recorded patterns. The means
for that are provided by the program
SHAPE 5.0 (Dowty, 1995; see also
Vesselinov, 1994) which can model growth
after entering the functions (dr/dt) =

Xy(dr /dt), etc., derived from the set of
Fy's and a model function (dr,/dt), by
drawing a succession of section polygons at
equal, up to 20, time intervals. Examples of
the procedure, based on the very scarce
measured patterns available in publications,
are given in the following sections. Three
simple model functions have been used, as
follows:

- deceleratmg mode (DM): =
kx(DM)t dr /dt = kx DM)t 1’7/2

~"constant- rate mode (CM) =
Kyeapts dr/dt = Ky



- accelerating mode (AM): 1y = kyanpt,
dfx/dt = 2kx(AM)t

The choice of the types of functions will
be explained in part II of this study. For the
purposes of this discussion it should be
noted that the k, constants reflect specific
crystal surface and environmental factors
governing growth.

Straight edge trajectories

This is the simplest case of edge path pat-
terns and it is also a common phenomenon,
characterizing for instance many hourglass
structures. Laemmlein’s equation becomes
F,y = cosp + sing(dw,/dr,) = cosp +
sinp.cotgy, = K,,, where the constant K, is
defined by the known interfacial angle o
and the measured constant angle y,. The
middle column of Fig. 2 shows three pat-
terns obtained by multiplying the DM, CM
and AM model functions by one and the
same K, to derive the other function
(dry/dt). they illustrate the following fea-
tures.

Straight trajectories represent the impor-
tant case of processes producing stationary
growth forms during which a crystal shape
does not change but remains similar to itself
(Chernov, 1980). A sequence of straight
paths (Fig. 1d,e) marks series of stationary
growth forms defined by different rate ratio
constants.

Stationary forms indicate that the abso-
lute growth rate functions of faces are of
identical type and differ only by some con-
stant measurable factor. In the absence of
data on absolute rates, the type of function
can be roughly inferred from the variations
of the widths of concentric zones (if pre-
sent) and/or from the size of the crystal, but
the results should be regarded as inconclu-
sive and must be verified by further analysis
as described in Part II. The three drawings
in Fig. 2 illustrate how zone widths vary
with time: they decrease from core to rim in
DM, increase in AM, and remain constant
in CM.

Crystal size is a very important charac-
teristics because it marks the end of growth
t, at which a central distance has reached a
vale of r,. The effect of the three modes

DM, CM and AM, which would result in a
given measured distance r,, may be evaluat-
ed in two ways: at equal total growth times
t. compensated b}/ different rate factors ki,
Le. I = X DM)tef2 = kx&(}M)te = x(AM)tedz
and at different total times with equal
growth rate factors, i.e. 1, = Ktepny =
koo = Kiteamy The first comparison,
aided fay further analysis as proposed in
Part 11, would outline potential differences
in the growth controlling factors, and the
second one would indicate the relative time
limits imposed on the overall process by the
three model rates. Both may provide valu-
able clues as to the probabilities of a pro-
cess to occur in the particular crystallization
environment. For instance, at a rate con-
stant of unity (the second proposition) an r,
of 4 will need 16 time units in DM, 4 in CM,
and 2 in AM, and these large differences
may help to choose the most probable
mode under the specific natural conditions.

A great number of complex growth pat-
terns in accessory zircon from granitoids
has been measured by Vavra (1993) who
also used SHAPE for modelling some of
them. A particularly impressive illustration
of sequences of straight edge paths (reflect-
ing a series of growth events) is his Fig. 8
(Vavra, 1993} which, in terms of this study,
uses the growth rate of (101) as a CM
model function to represent the growth
rates of six other faces by the respective
measured constants. The works of that
author on zircon morphology, summarized
in the quoted paper, treat also the need of
statistics and other important problems in
the study of internal patterns, and demon-
strate the non-trivial implications of their
analysis.

A case of hyperbolic trajectories

In 1968, Kastner, Waldbaum described
hourglass patterns in authigenic albite
formed in micritic limestone during early
diagenesis. They consist of numerous cal-
cite, quartz and calcareous inclusions in the
interior which, close to the cores of the
euhedral crystals, disappear from the {010}
growth pyramids (thus marking a growth
event shortly after the start of crystalliza-
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1 [100] 1 [010] 1 [001]

CM

Fig. 2. SHAPE models of a hyperbolic pattern in authigenic albite for the decelerating (DM), constant-rate (CM) and
accelerating (AM) growth modes

Pur.2. Moaenu ¢ SHAPE Ha xuiepSoiuyaa CTPYKTYpa B ayTHIeHeH aIOuT B PEEXUMM Ha pacTexk ¢ Hamasspaua (DM),
nocrogHua (CM) u napacteama (AM) ckopoct
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tion). The authors describe the surface
dividing the inclusion-rich from the inclu-
sion-poor volumes and sketched in their
Fig. 5 as a very flat hyperboloid of two-
sheets ry, N -1,)/g -1 /e =1, wherer,, 1, T,
run along the normals of (100) (010) and
(001) resp., and the constants are f<<g<<e.
Along the same directions, the crystals
reach up to 1.8, 0.3 and 1.5 mm, resp. Thus,
the inittal short period, during which all
growth pyramids entrapped inclusions at
unknown rate ratios, was followed by an
abrupt increase of the relative {010} rates
under inclusion-free conditions asymptoti-
cally approaching constant rate ratios with
time. The well defined internal geometry
permits the following analysis of growth
kinematics with some results shown in Fig. 2.
For the section r, = 0 we obtain the
hyperbola r,'/f* - r,’/e” = 1 (asymptote T,

[f/e]r,) fyrom which  we derlve
(dry/dt)/(dry/dt)y = (f/e’ )(rX]/r ), and
(dry /dt) (f/e)(dr /dt)(l—i—e/r ) For the
section r, = 0 we have r)/f - /g’

(asymptote r, = [f/g}r ) obtaining
(dryd0)/(dry/dt) = (g/F)(r,/r,), and
(dr,/dt)= (g/f)(dr /dt)(1- f/r W For the

section r, = 0, Wthh 18 between the two
hyperboloid sheets, the relations are r, =

[g/e]r,, and (dr,/dt)=(g/e)(dr/dt). The
unknown ratios e : f : g can be derived by
assuming that the maximum crystal dimen-
sions have been reached in long enough
time so that the difference between the
respective hyperbola and its asymptote has
become negligibly small. We obtain 2e : 2f :
20 =18:03:15=6:1:5 Now the
model functions DM, CM and AM can be
substituted in the above relations to draw
test crystals by the computer, experimenting
also with various ks and t.’s in them, as
proposed in the previous section, to satisfy
the boundary conditions imposed by the
observed crystal dimensions. The general
features of patterns obtained by the three
modes are illustrated in Fig. 2 for total
growth times 16 in DM, 4 in CM and 2 in
AM (compare with the second proposition
in the previous section). The small inclu-
sion-rich core formed before the onset of
hyperbolic growth is reproduced by the first
zone grown at equal rates of the three
forms.

A general feature of hyperbolic patterns
is that they record growth processes which,
in contrast to those discussed already, never
produce stationary morphologies although
the crystals asymptotically approach them

f /
7 (001) QD — (001)
Qfa ," F b I' 'S
= .
1 ]
7 ! 7
7 / I
l i
i
4 /
; 1
(0-10) (010) (0-10) (010) "
III..II FRLOILS 1L IRk

Fig. 3. SHAPE models of a parabolic pattern in titanaugite: a - (010) and (0-10) are in DM resuliing in CM of (001), &
- (010) and (0-10) are in CM resulting in AM of {001). The points measured by Gray (1971) are marked. IDashed line

marks the end of the original section

@ur. 3. Moaenu ¢ SHAPE ua napaGonuuna cTpyktypa B turanasrat: a - (010) m (0-10) ca B pexxunm DM, koiiTo Bogu

no pexum CM wa (001); b

- (010) = (0-10) ca B pexum CM, Bomemr ze AM na (001). Mapkupana ca TOYKHTE HA

wasmepsanuaTa ga Gray (1971), mpuxopara NHHAA DOKA3Ba Kpas HA TIpepe3a B OpUTHHATIHATA (HATYpa




with the increasing size. In this example sta-
tionary and non-stationary sections can be
directly compared (Fig. 2). The hyperbolas
produced by the DM model have sharper
noses and flatter, almost linear branches
than in the other models. Comparisons with
photographs in Fig. 3 of Kastner, Wald-
baum (1968) show that most probably it
was this mode that controlled the growth of
all figured crystals including those of appar-
ently linear sector boundaries. This hypoth-
esis is strengthened by the longer growth
times needed by the DM model which
agrees with the growth conditions to be
expected in such an environment of crystal-
lization as discussed in Part 1I. Generally,
patterns of such well defined and more
complex geometries provide much more
conclusive evidence than simpler ones and
permit to model a growth process in arbi-
trary time units.

A parabolic trajectory

In what may be called a pioneer study, Gray
(1971) tried to deduce the kinetics of crys-
tal growth of titanaugite phenocrysts from
the (unusual) parabolic shape of their hour-
glass structures. The kinematics underlying
the pattern was not examined in detail, and
presents an interesting problem for the pre-
sent-day computer-based techniques.

The pattern, shown graphically in Fig. 2
of Gray (1971), is a perfect second-order
parabola in the {(100) section produced by
the growth of (001), (010) and (0-10). As
noted by Gray, its symmetry axes are slight-
ly (about 6°) skewed with respect to the
orthogonal system of the normals to (010)
and (001). Since it was measured in the
plane (100), it is also tilted with respect to
the zone axis [100] of the three faces by the
angle (B-90°), i.e. about 15° for titanaugite.
Thus, before modelling the pattern by the
computer it has to be recalculated in the
correct co-ordinate system required by
Laemmlein’s relation. Gray did not express
the curve analytically but careful measure-

ment of the diagram has given y = 0.070x’
in the onglnal co-ordinates, transformed to
r, = 0.091r,” = 0.042r where Iy, Iy and r,
are the central distances of (001) (010) and
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(0-10), resp. The transformation has broken
up the original parabola into two parabolic
branches reflecting the simple fact that the
two symmetry related faces of {010} under-
went unequal development and produced a
distorted crystal shape, as can be seen in
Fig. 2 of Gray (1971). Substitution of the
DM model for r,, (dr,/dt) in these expres-
sions results in CM along 1y, and substitu-
tion of CM along 1, produces AM along r,.
The two models are shown in Fig. 3 to ilfus-
trate the unambiguous way in which the
correct functions can be found in this case.
There are three other important aspects of
this example which need some comment.

Kouchi et al. (1983) have reproduced
sector zoning and measured the growth rate
of clinopyroxenes in laboratory experi-
ments, thus providing data for evaluation of
their absolute rates of crystallization in nat-
ural environments.

Growth rates of clinopyroxene phe-
nocrysts supply important information
about other related contemporaneous pro-
cesses and the results of Kouchi et al
(1983) have been used for assessing the
time period of extrusion of a basalt body
(Shimizu, 1990). They become even more
important, however, if compared with the
rates of the reverse process of dissolution of
xenocrysts entrapped by the magma along
its way upwards. That follows from the fact
that the two processes, growth and dissolu-
tion, occur side by side but there are time
differences depending on the level in the
crust from which the xenocrysts have been
extracted. Reaction rims of xenocrysts have
been used for assessing the velocity of
upward flow (e.g. Zhang et al., 1989), but if
the times derived in such studies are com-
pared with those of phenocryst growth they
will provide clues as to the source of
xenocrysts and will strengthen or weaken
hypotheses about the overall process of
emplacement and solidification.

The pattern of Gray (1971) demon-
strates that the growth process has been
continuous, undisturbed during the parabol-
ic growth, the unequal rates of the two
{010} faces included. The slower (010)
growth has been evidently caused by a
weaker supply of nutrient (probably due to
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Fig. 4. SHAPE models of periodic patterns: a, b, ¢ - ,fir-tree” zonings, where ¢ shows the effect of different rate
ratios and absolute rates; d, e, f - trajectories produced by sine oscillations of growth rates

OQur. 4. [lepuonuusn cTpykTYpH, Monenupadu ¢ SHAPE: g, b, ¢ - 30HANHOCTH THII ,,eMXUYKa“ KATO B C €
NoKa3za® edeKThT OT PA3NMKUTE B OTHOWECHUATA M B abCOMIOTHHUTE CTOMHOCTH HAa CKOpocTHTe; d, ¢, f -
TPAaEeKTOPHUH, MOJIYUCHHU ChC CHHYCOHJAIHH KOJIeOaHHs Ha CKOPOCTHTE

another crystal growing closely by), and the
cause remained active during the entire
period of parabolic growth. If the crystal
was not part of a glomerocryst (Gray, 1971,
did not comment on that) but an individual
crystal, its distorted shape would mean that
there was either no flow in the magma
body, or the flow was laminar and did not
disturb significantly the distances between
crystals. Studies based solely on composi-
tional variations (see Paterson, Stephens,
1992, for a relevant discussion) frequently
infer events such as sudden forced magma
movements from sharp compositional
changes. The present example demon-
strates that conclusive evidence about flow
processes in a magma body can be derived
from a careful examination of hourglass

patterns and distorted shapes in phe-
nocrysts during any routine study of thin
sections.

Periodic patterns

Oscillatory zoning is one of the important
phenomena under study and debate at pre-
sent (see Holten et al., 1997, for a view on
the current state of the problem). The
geometry of patterns seems to be totally
ignored though, and this author is unaware
of any other measured trajectories in publi-
cations besides that in a crystal of
hydrothermal arsenopyrite in Vesselinov,
Kerestedjian (1995). That pattern is a com-
plex one and requires a separate analysis,
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but the simple (001) section of arsenopyrite
with (010) growing between (210) and
(-210) along {010] has been used again here
to illustrate some general features of peri-
odic trajectories in crystals. Since we do not
have any F,, functions now, the alternative
procedure of selecting (dr, /dt) and (dr,/dt)
and letting SHAPE create the tra]ectorles
has been employed. The program has no
special option for periodic functions
because of which its ,discontinuous growth
mode® has been used entering rates calcu-
lated beforehand at intervals of /4 to take
the best advantage of the 16 zones available
in that option.

In order to express the rates in an oscil-
lating mode (OM), we have superimposed
sinusoidal longitudinal variations on anoth-
er growth rate mode to obtain (dr,/dt) = V,
+ Ajcosmt = V, [1+(A,/V,) cosmt], where
V, is some growth rate function, o = 2n/T
Is a constant angular velocity, ‘and A,

a (A1) = a,(2rp,/T) = a,(pw), in which
L, 1s the wavelength of variations along r,,
py is the amplitude of sine oscillations, and
a, 1s a constant. The magnitude of a, is Tim-
ited by the condition that the growth rate
cannot be negative from which it follows
[1+(A/V,) cosot] = 0, and A,=a(A/T)
<V,. At a, = 0 the oscillations become inac-
tivated.

A convenient procedure in experiment-
ing with OM is first to choose a trajectory
dw,/dr, in Lacmmlein’s relation, then to
select functions (dry/dt), (dr,/dt) producmg
that trajectory, and finally fo superimpose
oscillations of chosen wavelengths, ampli-
tudes and phases. In the following exam-
ples, r, and r, run along the normals to
(010) and (ZlO) (-210) of arsenopyrite,
dw,/dr, are constants, i.e. the edge trajecto-
nes are straight lines, and the rate functions

are also constants (CM). The wave-
lengtll of oscillations along r, is a projection
of that along r, (A, = cosek,) and the vari-
ations are always in phase to simulate the
effect of a cause acting simultaneously on
all faces.

In the first three very simple examples
(Fig. 4a,b,c), A, = Ay = 0, and in the half
period O<wt V O at some constant value
of V, whereas in nswt<2zn, V,=0 at a con-
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stant V,. Fig. 4a show oscillations about an
edge trajectory of dw,/dr,=0, and the sym-
metry of the (001) section turns them into a
pattern commonly used to illustrate sector
zoning (e.g. Lacmmlein, 1948; Sunagawa,
1987) and called ,fir-tree zoning“ (e.g.
Paterson, Stephens, 1992).The zero abso-
lute rates of faces are readily recognized in
such patterns because their outlines are par-
allel to the faces involved. Inversely, non-
parallelism means non-zero rates. In Fig.
4b, (010) is allowed to grow for another
three time units before being blocked again,
which introduces blank portions in the pat-
tern, i.e. (010) disappear, illustrating the
effect of overlapping growth angles, in this
case those between (010),(210) and (010),
(-210), mentioned in a previous section.
Fig. 4c shows the effect of diminishing
growth rates and of changes in edge trajec-
tory. In the first six intervals the edge tra-
jectory carrymg the oscillations runs paral-
lel to r, at V, = coseV, and V, is double
that in the remammg 1ntervals during
which the edge trajectory is parallel to ry at
V, = V,jcoso. It is seen that the diminish-
1ng absolute rates produce oscillations of
shorter wavelengths and smaller amplitudes
which both are measurable quantities and
can be analyzed to derive trends in the vari-
ation not only of rate ratios, but of absolute
rates as well. This property of periodic pat-
terns, lacking in non-periodic ones, makes
their study even more important and adds
to their significance as natural time-record-
ing devices.

Figs 4d,ef illustrate sine oscillations
superimposed on a trajectory of dw,/dr, =
0. In Fig. 4d, A,/V, = A,/V, = 0.5 to show
that at equal amplitudes the resulting tra-
jectory will be a straight line, adding an OM
model of stationary shapes to the already
discussed DM, CM and AM models (Fig.
2). In Fig. 4e, A,/V, = 0, Ay/V =1, and in
Fig. 4f, A /V = 1 A /V ’0. Note the
great difference between the two patterns.
It is defined by the geometry of the section
(the angle) because both patterns are pro-
duced by smooth oscillations of one of the
rates at a constant value of the other rate.
This difference has two very important
implications. First, it shows that the shape



of a given pattern may provide conclusive
evidence as to which rate has varied in a
specific case (the greater amplitude of (010)
rate variations than that of (210),(-210) has
already been inferred by an independent
but less conclusive analysis in Vesselinov,
Kerestedjian,1995). And secondly, nothing
in the shape of the (010) ,,bullets” in Fig. 4f
is suggestive of the smooth oscillations of
the (010) growth rate. On the contrary, they

are seemingly indicative of saw-toothed

changes with abrupt rise and slow fall. Such
changes have been envisaged in theories in
order to explain compositional patterns in
solid solutions (e.g. Ortoleva, 1990). Yet,
the example here combined with the com-
positional pattern in Vesselinov, Kerestedji-
an (1995) shows that smooth rate oscilla-
tions may produce abrupt compositional
changes. This non-trivial result may greatly
facilitate theoretical treatments of oscillato-
Iy zoning.

Conclusion

Edge paths in crystal sections are direct
records of crystal growth kinematics that
can be measured and analyzed by Laem-
mlein’s relation to derive a limited number
of possible growth histories and to model
and assess the probabilities of one or anoth-
er process to occur under specific natural
conditions, as illustrated by the examples
covering a wide range of environments: sed-
imentary, magmatic, and hydrothermal.
This source of information becomes even
more important when analyzed in terms of
crystal growth kinetics as proposed in Part
II of this study.
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