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Internal morphology of mineral crystals as clue to
their growth histories. II. From kinematics to
kinetics
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Abstract. A procedure is proposed for expressing the kinematic relations discussed in the first part of this
study in valid kinetic terms to serve as a guideline in the analysis of crystal growth histories. It is based on
the general relation that growth rate in solutions is proportional to the supersaturation and inversely
proportional to the sum of the interface kinetics resistance and the diffusion transport resistance. A simple
but adequate isotropic model has been selected from the literature to provide a theoretical background
for analysis of absolute rates. It defines four major growth modes: kinetic mode which does not depend
on transport processes, diffusion mode which does not depend on interfacial processes, and two other
modes involving an interplay of interfacial and transport processes. In Part I they have been simulated by
the constant-rate, decelerating, accelerating and oscillatory kinematic models, resp. Rate ratios in a
crystal expressed in terms of these modes permit pinpointing the major factors responsible for the
formation of kinematic patterns which is illustrated with the examples of straight, hyperbolic, parabolic
and periodic edge trajectories described in Part I. The proposed procedure provides means for testing
various mineral formation models both on small and large scales and prepare the basis for more thorough
kinetic analyses by the modern theories of crystal growth.
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Beceunumnos, W 1998 Berpenmara MOpgonoris Ha KpUCTATHTE HA MUHECPATIUTE KaTO HHIHKATOD Ha
nponecuTe Ha pacTexa uM. II. OT kuHeMaTHKa KBM KAHETHKA. - [ eoxum., muHepad. u nempoa., 34, 15-26

IIpennoxed e HaAUYWH 3a NpPeNCcTaBAHE HAa KHHEMATHYHHTE 338BUCHMOCTH, pasriiefaHH B ITbPBATa 9acT Ha
paborara, ¢ KMHETHYHH BEJMYHHH, TONXOMSINH 33 aHAA3 HA HaW-BRKHHTE XapakTepHCTHKH HA
nponecuTe Ha pacrex. Toi ce ocHOBaBa Ha 00UIOBANHIHATA 3aBHCHMOCT, Y€ B PA3TBOPH CKOPOCTTa Ha
KPHUCTaJICH PACTEX ¢ IIPaBO MPONOPIHOHANHA HA IPECATIIANETO ¥ 00PATHO MPONOPIKOHATHA HE CYMAaTa
OT CBIOPOTHBJEHWATA Ha (dazopaTa rpaHHNa W Ha AUQY3HMOHHUA IpeHOC. 3a aHaIH3 Ha abCOIOTHUTE
CKOPOCTH OT TEOpEeTHYHATA JIMTepaTypa ¢ nonbpad C©AMH NPOCT, HO JOCTATHYHO H3YepHaTeNleH
H30TPOIIEH MOLEJI, KOHTO OIPEAeTis Y€THPH ITIABHA PeXUMa Ha PACTEX: KHHETAYEH, B KOUTO IPOLIECHTE
Ha IIpeHOC He HrpasAT pons, nudy3HoHeH, He 3aBycell OT IIPoLecHTe Ha (azoBaTa IpaHUma, W IBa
peXHMa, B KOHTC Te3H [NIABHM LPOLECH Ca B3aUMHO CBBP3aHH. B II'spBAaTa 9YACT TE3H PEKHMHU Ca
MOJIeIMPAHY CHOTBETHO C ITOCTOSHHM, HAMAJISABAILH, PACTSIIH K [EPUOAMYHY KHHEMATHYHU (DYHKLIAH.
OTHONIEHHATA HA CKOPOCTHTE HA CTCHHTE HA KPUCTAIA B YSTHPHTE PEXUMA MO3BOJIABAT A4 C€ ONPEIeNsT
rnasaATe HAKTOPH, JOBEIH 40 0Dpa3yBaHeTO HA AajieHa BBTpelIHO-Mopdosoxkka cTpykTypa. Tosa e
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UIIOCTPHPAHO ¢ NpHMepUTe Ha UpaBoidHeind, XunepOoIuYHH, TapaOonuvHy M HEepHOSUYHA PHOHI
TPaeKTOPHH, pa3rJIe]any B I'bpBaTa 4YacT. IIpeIUIOKEHHAT aHAJHU3 [103BOJIABA NPOBEPKA HA PA3IHYHHA
MO/JIeNTd Ha MUHepancoOpa3yBaTellHAL IPOLeC B FOMIAM W MalbK Mamad U ch3maBa OCHOBA 3a HeTalnHU
AHAJM3M HA KHHETHKATA [MOCPEACTBOM CBHBPEMEHHUTE TCOPUM HA KPUCTATHHS PaCTEK.

Karouosu 0ymu: XPUCTATICH PACTeX, MUHEPaTHa KMHETHKA, CEKTOPHA 30HAIHOCT
Adpec: Teonorndecky HHCTUTYT, buarapcka akageMus Ha Haykute, 1113 Codus

Introduction

Measurement and analysis of internal
morphological patterns, as proposed in the
first part of the study (Vesselinov, 1998),
result in a limited number of crystal growth
models satisfying the kinematic relation-
ships observed in a given specimen. In this
second part, an attempt is made to trace
back the kinematic constraints to the
factors of crystallization responsible for the
growth histories recorded by edge trajectory
patterns. Gray (1971) was probably the first
to approach this kind of problems by
selecting growth mechanisms the kinetics of
which would satisfy the measured rate
ratios of faces. The voluminous literature
on crystallization kinetics of minerals (e.g.
Kirkpatrick, 1981; Sunagawa, 1987; Cash-
man, 1990; Holten et al., 1997; and their re-
ference lists) concentrates on absolute rates
and rarely offers studies on the implied
effects on rate ratios although that is exactly
what is needed to extend the analysis of
measured patterns to kinetic constructions.
In other words, a model describing the ove-
rall growth kinetics of a crystal should
incorporate the Kkinetic relations of all
growth pyramids of its faces, and they in
turn should obey the kinematics recorded in
the internal edge path patterns.

As pointed out by Sunagawa (1993), the
overwhelming majority of minerals crystal-
lize from multicomponent systems by the
intricate mechanisms of solution growth. In
trying to unravel their growth histories one
is faced with the complexity of crystalliza-
tion processes In nature requiring evalua-
tion of many variable and often interrelated
factors, the effects of which on morphology
has been reviewed in detail by Sunagawa
(1987). The direct approach of Gray (1971)
to such problems may not be always
feasible and/or exhaustive and this study
proposes an analysis in more general terms
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combining the major crystal/environment
interactions to serve as an intermediate step
between kinematic and more thorough
kinetic analyses. The procedure is based on
the comprehensive treatise on crystalliza-
tion processes by Chernov (1980, Chapters
14-17) which, among the other books on
present-day theory and practice of crystalli-
zation, gives a clear view to the forces
behind the relations between rate, size and
shape, external and internal morphologies,
in a form well suited for modelling kinema-
tic patterns. It should be noted that a
similar approach is used in designing crystal
growth experiments (e.g. Givargizov, 1980),
and there are also models for interpreting
natural crystallization (e.g. Holten et al,
1997) and for computer programs of
dendritic growth (Martyushev et al., 1997)
using the same basic arguments.

Absolute rates of

crystal
surfaces

Chernov’s model of the major factors
controlling the growth rate of a crystal
surface, to be used in this study, is
iltustrated in Fig. 1. It considers a spherical
crystal of density p g/cm’ and radius r, cm
growing at a rate V cm/s from a supersatu—
rated solution of concentration C g/em’

which drops to G g/cm’, its solubility value
under the given environmental conditions,

at the surface of isotropic kinetics B cm/s.
‘The bulk phases are divided by a boundary
layer of thickness & cm across which the di-
ssolved substance with a diffusion coeffici-
ent’ D cm’s (assumed constant) is
transferred to the growing surface at a rate
D/8 cm/s, and the surface takes it up at a-
rate p cm/s. Then V = QB 4AC, where Q =

1/p, AC = (C - Cy), and I/Beff = (1/B+38/D).

The general relation that in any process the
rate o= driving force [ resistance, is expressed
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Fig. 1. The isotropic model of Chernov (1980) demonstrating the major factors controlling the absolute rates of a growing crystal surface
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here as

V = QAC/(1/Ben),
which leads to the more special relation
valid for solutions: growth rate o<
supersaturation |/ (interface  kinetics
resistance + diffusion transport resistance),
expressed here as

V = QAC/(1/3+ &/D)

For morphological purposes it can be
expressed in still another form by
considering that the slower the growth rate
of a face the greater the probability of its
occurrence on a crystal, ie. its
morphological importance (MI) is
proportional to the inverse rate, or *
MI < 1/V = (p/AC)(1/B+6/D) = [(p/AC)
(1/B)] + [(p/AC)(B/D)].

This latter form emphasizes the fact that
the variety of crystal shapes, sizes and
internal kinematic patterns is produced by
the complex interplay of two major proces-
ses, those of interface reactions and diffusi-
on transport, defined by the combinations
of the driving force with the two resistances.
We propose to use this generalized equati-
on and Chernov’s reasoning as a guide in
the kinetics underlying the kinematics of
recorded patterns (see also Sunagawa,
1987). To lay the groundwork for the subse-
quent discussion, the general features of the
model are reviewed below, omitting many
details and implications which, although
important, are not relevant to the kinema-
tics of the examples in Part I of this study.

Evaluation of the driving force requires
knowledge of the solubility curve of the
given substance and analysis of the origin of
supersaturation and the potential causes of
its variation (an example can be found in
Vesselinov, Kerestedjian, 1995). Combined
with the diffusion resistance, it defines the
flux of matter to the adsorption layer of
small thickness &, on the surface, and gene-
ralty reflects the environmental conditions.
Combined with the interface kinetics
resistance, it defines the flux from dissolved
to solid state via interfacial processes which
depend on the state of the interface (degree
of thermodynamic or kinetic roughening,
presence of defects such as screw disloca-
tions acting as step sources, etc.), its crystal-
lochemical characteristics, presence of fore-
ign species, incl. solvent, which may or may
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not interact with the interface and may
form interfacial subphases in the adsorption
layer (recently, a theory has been developed
by Liu, Bennema, 1995, to account for their
effects on growth kinetics and morphology).
Crystal and environment interact through
the medium of the boundary layer, the
thickness of which may vary from the mini-
mum §; (e.g. in stirred solutions) virtually to
infinity, closely approximated by a distance
comparable to the crystal size r,, in unstir-
red solutions under certain conditions.
Chernov’s analysis gives criteria for distin-
guishing between growth-controlling pro-
cesses. Thus, in stagnant solutions under the
condition V<< D/r,, diffusion is stationary
across r, and the rate equation becomes

V = QBAC/(1 + Br/D)
where the dimensionless ratio Pr/D 1is
Chernov’s criterion for the rate-limiting
process during growth. Two extreme cases
are distinguished.
Kinetic mode. If Pr/D<<1, the diffusion
resistance can be neglected (because 8~3y),
the rate V. = QBAC does not depend on
crystal size which increases as r, = QBACt.
In Part I of this study, the kinetic mode at
constant B and AC is simulated by the CM
model (see also Fig. 2a).

The kinetic coefficient B depends on the
supersaturation, i.e. it reflects the reaction
of the growing surface to the deviations
from equilibrium. The specific response, in
turn, depends primarily on the interface
roughness and defect structure of the surfa-
ce which define its growth mechanism: la-
yered (by screw dislocations or two-dimen-
sional nucleation) or continuous (normal,
according to Chernov). Sunagawa (1987)
gives an instructive diagram of the rate
variation with supersaturation outlining the
ranges in which a growth mechanism is
active. At the lowest supersaturations,
growth takes place by the screw dislocation
mechanism, B is proportional to AC (see
also Chernov, 1980) so that Ve<AC®. In the
range of medium supersaturations, layered
growth still predominates although it pro-
ceeds by two-dimensional nucleation, and
Ve<AC. At the highest supersaturations, the
surface is no longer smooth and growth is
continuous at Ve<AC again. In terms of
kinetic resistances, 1/ is lowest on perfectly



rough interfaces, and is lower on defect
surfaces providing screw dislocation step
sources than on perfectly flat interfaces
requiring 2D nucleation for their growth.
The types of interfaces, which may vary
even on one and the same crystal, are
described and illustrated in Sunagawa
(1987).

It may be seen that both crystal size and

its form constrain the ranges of absolute
rates, by means of D/r,, and supersatura-
tions, via the growth mechanism producing
flat or curved surfaces which are observed
as concentric zoning in internal morpholo-
gical patterns. It should be noted that the
lower the kinetic resistance 1/B the greater
the chances for the condition Br,/D<<1 to
be violated and for the crystal to leave the
kinetic growth mode.
Diffusion mode. If Pr/D>>1, the rate-
limiting step is diffusion transfer across
d~1,, the kinetic resistance is small and can
be neglected, the size increases as r, =
(2QACD)*t"* and the rate decelerates as
V = QACD/r,. Steady state is never rea-
ched in this mode. At constant D and AC
we obtain the DM model in Part I of this
study (see also Fig. 2bj).

The main feature here is that, after
exceeding a certain critical size which
diminishes with the increasing supersatura-
tion, the crystal loses morphological stabili-
ty and the starving surface disintegrates into
separate sinks for the insufficient nutrient.
Morphologically, the event is marked by the
onset of hopper and dendritic growth.
Expressions for the critical size are given by
Chernov (1980), and the relations with su-
persaturation and growth mechanisms are
discussed and illustrated by Sunagawa
(1987). The relevant point is that again size
and shape provide clues for constraining
the ranges of absolute rates and supersatu-
rations.

Stirred solutions. Generally, the effect of
stirring i1s described as & diminishing from r,

to §, with the increasing velocity of flow.

towards the surface. Chernov has shown
that 8 diminishes proportionally to the squ-
are root of flow velocity and the surface
growth rate increases parabolically with the
increasing flow velocity if the rate-limiting
step is material transport. With 6 approa-

ching &, the interface kinetics control takes
over and the rate becomes independent of
flow velocity. To account for the effect of
diminishing & during the transition to kine-
tic mode, we have introduced the AM mo-
del in Part 1 obtained by writing V =
QUAC for constant AC and a rate U o< t at
which the boundary layer thickness dimini-
shes during growth.

The stirring mode may be considered
from two angles (see also Fig. 2d). Stirring
proper forcefully closes in the external
concentration field onto the growing
surface which may be regarded as fixed in
space during the process. By eliminating the
diffusion control it removes the constraint
on size. On the other hand, at a low kinetic
resistance and high driving force the surface
growth rate may accelerate at the expense
of the increasing concentration inside the
boundary layer climbing up the gradient
towards the bulk solution. If the rate is
much higher than diffusion transfer, the
boundary layer thickness would diminish
from the side of the crystal towards a fixed
external boundary. Such a process takes
place for instance in dendritic growth where
perfectly rough interfaces of very low
kinetic resistance permit high growth rates
at high supersaturation (Sunagawa, 1987).
Thus, the AM model may simulate both the
effect of stirring and that of fast growth up
the concentration gradient towards a bulk
solution of more or less invariable
concentration during the process.

The three modes discussed so far follow
up the relationships illustrated in the rate
vs. supersaturation diagram of Sunagawa
(1987). Further constraints on the absolute
rates can be derived from the compositional
inhomogeneities of crystals caused by rate-
dependent non-equilibrium uptake of
impurities {e.g. Vesselinov, Kerestedjian,
1995).

Compositional inhomogeneities. Chernov
(1980) has distinguished four growth rate
ranges within which 3D, 2D, 1D and 0D
equilibration of foreign species in a crystal
is attained during growth. The lowest rates
under quasiequilibrium conditions permit
3D equilibration in the bulk crystal which
(see Fig. la,b in Part I) would result in
homogeneous sections with non-observable

19



exa1oed eH oHeasdodoA M HOLD KHHRHMHEAI BH BLEHHAUIN BH OHEEEIENEH BH

Lo m9Lo ¥ BUTY LewH dodiced ¥uHoIMOodI W BLLOOHXdIEa0N eH xaloed 1¥uedeg u eL1ooHXxdLgon WLy edodaleed BH 1930101 (p (OLMHOLD BH Xolokd BH H100dONO
HENBHIO MIMELRTrodno ‘elsunedlHONHOY BH HIHouedl nayeHro udu oH (g oLey (2 (Moo HohMHEBAI BMHLI9ELOLD BH BLRHUAMINI LO LEIaT2dIO 99 Xa10ed BH 9LMLO0dONO H
BN ONIKOdQoHadI 80 KMHOIGULOdNL) 91UHhHLIHHY (§ (OHBIMHMOIdI OLOHITRY Al 91HHAL) BH HLHOHIM(I0N SLHHhHLOHMN 1O LEIrRIFadIo 99 xa1oed BH 21M120d0ND
1 oreW owmxedgoHadn o eooHadn BH oLeuHOUgMLodudd (v -ooHedn KMHHOHEAQHT BH M eluHedI Bledoced bH BLEWHIKEHLOAOLO BH Krrod BHIALHMOOHL() ‘7 “JUQD
ymoi8 Sunowold pue sseuyory) Iake] Arepunoq 2y} SurysIurwip Jo 199]J0 SWIES 27} PUL 2UO 2ABY UOIIN[OS pajeinjesiadns

9y} SPIEMO) 20BJI2IUI U]} JO YIMOIS ISB] PUB 20BJIAIUI JY) SPIEMO] MO[J uonnjos (p {s208J Jo sajel ymoid [enbs Suruyep sjusrpeld uonenuaduod [enbs 18 Inq (g
SB auwIes (2 {sassaudIY) Ioke[ AIepunoq 2y} Aq Pauljep 218 )Rl YIM0I8 Y} pue 9[qISI[Fau 218 $90URISISAT 908JIAIUI (¢ ‘HoneIMIEsIadns UsAIS 2U) 1B $208B] JO SJUAIDIJR0D
$O1jQUIY 20BJIAIUT oY) AQ pauljep ale sajel Ym0l ay) pue 9[qiSiFau sI aouelsisal 11odsuen) (v s20UL)SISAI J10dSURI) UOISNIJIP PUB SOIQULY 90BJI9IUI JO 3[01 2ANR[Y ‘T 81

x x

Y DIV=

[o%

DV v apouwt uorsnffip (2

x-

(1) yimoi3 jsnf puv () moyf Jo

D

~— A

I

0

I

s102/f2

<N

(p
5

x 0 X X

OV= V=

IV v apou

uorsnffip (q

9=9=

1

0

I

Q ‘apout o1jaury (v

20



edge trajectories, and the foreign species
concentration in the respective zones will be
proportional to that in the environment by
the partitioning coefficient K<or>1 at
equilibrium. At greater deviations from
equilibrium and correspondingly higher
growth rates the process may become too
fast to allow bulk equilibration and the
surface will trap the species in non-
equilibrium concentrations proportional to
those in the environment (unstirred
solution) by a factor K4 = KCy/Ci(..
K/AK + (1 - K)exp(-V6/D;)] where Cyg,
C( ) are the foreign species concentrations
at the crystal surface and in the bulk
solution resp., and Dy/§; = V; is the rate of
impurity species transport from solution to
crystal. These higher rates may, however,
permit 2D equilibration in the surface layer,
and if the crystal develops crystallographi-
cally non-equivalent faces it may show
sectors (Fig. 1c in Part I} due to differences
of the 2D equilibrium partitioning coeffici-
ents in the respective face layers. Further
increase of absolute rates may result in 1D
equilibration along growth steps only and
then inhomogeneities will occur inside a
sector due to non-equilibrium partitioning
along crystallographically non-equivalent
orientations (Paquette, Reeder, 1990, have
described such intrasectoral zoning in
calcite). Finally, at the highest rates, 0D
equilibration will be possible at interfacial
kink sites only and the crystal composition
will repeat that of the environment.
Impurities of various kinds affect prima-
rily the kinetic resistance 1/B increasing or
decreasing it (Chernov, 1980; Sunagawa,
1987). The interplay between interface
kinetics and diffusion transport may also
lead to oscillatory zoning patterns as shown
by many workers, in addition to those which
may be imposed by compositional variati-
ons in the bulk solution (e.g. Holten et al,,
1997). To account for such situations, we
have introduced the OM model in Part I in
which oscillations are imposed on a given
rate V,. By rearranging the above-given
equation of Chernov we get
ViV, = 1H{In[(1/K)-1] - ln[(l/Keff) 1y =
1/{1n[(1/K) 1-Inf(Ci(.y/ KCig) )-1
in which K.y may vary from )K at & -0 (or
&) to unity at &; —eo (Or 1), and in turn

V,/V, may vary from very large to very
small values. The OM model simulates such
variations by V = V (1 + V;/V,) in which
V; is replaced by a simple cosine function.
Finally, a note should be made about the
negative feedback indicated by Chernov’s
rate equation in stagnant solutions. Indeed,
if for instance the kinetic resistance 1/B
increases for some reason, V decreases and
the concentration field closes in upon the
growing crystal diminishing the diffusion
resistance §/D and opposing the rate chan-
ge. Thus, rates may be rather stable against
fluctuations under certain conditions.

Rate ratios

In order to use Chernov’s isotropic model
for analysis of kinematic patterns we have
introduced anisotropy by writing subscripts
to the quantities in the rate equation
relatmg to surfaces x,y in a crystal to obtain

ViV ={(p/AC) (1/By)] * [(p/AC)
(3, /D))} [ Al(p/AC)(1/By)] + [(p/AC))

(8,/D

"In” other words, kinetic ratios based on
Chernov’s model are required to satisfy
Laemmlein’s kinematic ratios derived from
measurements (Part I). In the above
expression, AC’s are also given subscripts to
account for possible anisotropy of growth
mechanisms [AC/(1/B)] and of concentra-
tion gradients [AC/d] around the crystal. If
AC is equal in the environment, the
express10n 1s reduced to

V/V, = (1/B; + 8,/D)(1/B, + 5,/D)
reﬂectmg environmental amsotropy of the
boundary layer only. A note should be
made here on the fact that supersaturation
vanishes in the rate ratio expressions (and
in the kinematic functions) although it is
implicitly present in the resistance terms.
This seemingly lost information is recovera-
ble through analysis of absolute rates by
Chernov’s model. Some effects of the
growth modes, discussed in the previous
section, on relative rates are readily seen, as
follows.
Kinetic mode. In the extreme case, the
diffusion resistances can be neglected and
the ratio reduces to V,/V, = §,/B, (Fig. 2a).
It would also require low a{)solute rates
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Vyy<<D/r,, which generally imply low
supersaturatlon relatively small crystals,
layered growth by screw dislocations and

internal homogeneity. If the kinetic coeffici-

ents are constants, this mode will produce
stationary forms with straight edge
trajectories independently of the magnitude
of supersaturation and its variation in the
environment (Part 1, the middle column in
Fig. 2), and the measured kinematic ratio
will be equal to that of the kinetic coeffici-
ents. Crystal shapes will depend on structu-
ral anisotropy, symmetry related faces will
show equal development and distorted
forms are not to be expected. Deviations
from point group symmetry should be
ascribed to interface kinetics factors such as
different defect structures of the faces of a
form (Sunagawa, 1987) or surface-active
adsorbents covering only part of the faces
of a form. On the other hand, changes in
the environment during growth introducing
adsorbents acting selectively on the kinetic
coefficients of different forms will change
their rate ratio which will be marked by a
change in the direction of edge paths.
Generally, this mode may be expected to
produce (sequences of) straight edge
trajectories.
Diffusion mode. In the extreme case, the
kinetic resistances can be neglected and the
ratio will reflect the anisotropy of envi-
ronment only, being reduced to V,/V, =
(AC,/8,)/(AC/5,), and even to V,/V, = 8,/
f/ )(1/r,) if AC is equal around thé
crystaly(Flg 2b,c). Compared to the kinetic
mode, it may be expected to occur at higher
absolute rates and in larger crystals, im-
plying higher supersaturations, wider range
of growth mechanisms, as well as probable
compositional heterogeneity. Since kinetic
resistance does not play a role in this mode,
it is close to the isotropic model of Chernov
and may be expected to produce less aniso-
metric shapes in which the interface kine-
tics differences of faces will be smoothed
out. The differences in the nutrient environ-
ment however will stand out and will be
reflected for instance in unequal develop-
ment of symmetry related faces. Since the
growth process never reaches steady state in
this mode, constant rate ratios will not be
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characteristic of it, and curvilinear edge
trajectories would be generally expected.
Intermediate modes. The countless situa-
tions between the above extreme modes
have to be described by the complete rate
ratio expression above. Generally, they may
be expected to result in complicated ratio
functions yet it seems that in many cases the
terms in the right-hand sums may be
approximated by simple functions judging
by the edge trajectory patterns. That re-
minds us of the kinetics/transport negative
feedback capable of damping down rate
variations in a changing environment. Sim-
ple functions can be envisaged for instance
in the distorted growth of symmetry related
faces in stagnant environment with constant
and equal kinetic resistances but constant
and different diffusion resistances. Motion
of such crystals in the environment will re-
duce or eliminate the differences by the
effect of stirring and will restore symmetry.
Fig. 2d illustrates that an external flow of
the solution towards the growing surface
may have the same effect on the thickness
of the boundary layer as fast growth of the
surface towards a slowly reacting environ-
ment. [t seems that rate changes induced by
compositional variations produce the most
complex ratio patterns. As indicated by
Chernov’s relations of absolute rates they
may reflect changes in the bulk solution, or
the interface response to the redistribution
of chemical species in the boundary layer
during growth, or both. The variety of pos-
sible situations however makes pointless
any further discussion of generalities and
emphasizes the importance of studies of
specific crystallization histories.

Edge path patterns: from

kinematics to Kinetics

Although few, the examples of growth
kinematics discussed in Part I of this study
provide opportunities for inquiring into the
kinetics of natural crystallization in less
general terms.

Straight trajectories. Edge paths represented
by sequences of straight lines have been ex-
emplified in Part I with Vavra’s work on



accessory zircon (1993). In order to use
Chernov’s model, the condition V<<D/r
should be satisfied. Rates in magmatic
systems has been evaluated as low as 10"+
10" cm/s (Cashman, 1990; Sunagawa
1993). Then, up to sizes of r=10" cm, the
diffusion coefficients of rock- formmg
components in magma should be D>>10~
10"* cm’/s, a condition leaving ample space
for applying Chernov’s equation smce
estimations give values of D up to 107-10°
cm’/s. If we assume further that after the
initial act of nucleation growth proceeds in
concentration field of equal AC around a
crystal (supersaturation variations are not
excluded), then face rate ratios will be ex-
pressed as V,/V, = (By/ﬁx)(l + Byt JD)Y/(1+
B,r,/D) where Br/D is the criterion for dis-
tmgmshmg between kinetic and d1ffus1on
modes. For reasonable values of about 10*
-10° cm/s (Chernov, 1980), up to sizes of
about 10® cm, ie. in the cores of zircon
crystals, growth will be kinetics controlled
and V,/V, = (B,/By) (similar situations are
discusded " in Cashman 1990). With the
gradual transition to diffusion mode in
larger crystals these simple relations will be
complicated by the diffusion resistance
terms and the differences in the interface
kinetics resistances of faces will become less
dominant which may result in richer zircon
morphologies. This general trend implies
the following. The simplest and best
expressed morphological relations to
environment are to be sought in zircon
cores. The early developed crystal forms
and their rate ratios are directly defined by
the specific temperature/composition
conditions in magmas as given in the widely
known diagram of zircon morphology.
Their later history is increasingly influenced
by transport processes and, as shown by
Vavra (1993), passes through many events
recorded by sharp changes of rate ratios of
early forms and appearance of new forms.
Vavra’s analysis has also shown that
conclusions based on final shapes can be
misleading, and the reason is that the forms
produced by the process are not stationary.
This does not invalidate the significance of
zircon morphology for genetic construc-
tions, it only calls for further work using the

kinetic interpretation of kinematic patterns
as a guideline.

Hyperbolic trajectories. In kinetic terms, the
hourglass structure of authigenic albite
(Kastner, Waldbaum, 1968, and Part I)
indicates that growth started at high
supersaturation and the high absolute rates
resulted in inclusion entrapment by all
growth pyramids. Supersaturation dimini-
shed with time because the {010} rates
reached the range permitting inclusion-free
growth, and the fact that this new mode
resulted 1n higher ratios relative to the
inclusion-rich {100} and {001} pyramids
indicates that inclusions retarded the {010}
absolute rates, i.e. that their B’s were lower
before the onset of inclusion-free growth.
The DM model in Part I, found to best
represent the pattern, has used constant
supersaturation for simplicity but it is easily
seen that introducing diminishing AC will
only emphasize the features marked by the
simpler model. They are characterized by
rates inversely proportional to the increa-
sing r's which leads us directly to the diffu-
sion mode of growth of all faces as
described in previous sections. This is at va-
riance with the analysis of Gray (1971) of
the same pattern who obtained hyperbolic
edge paths from ratios of two faces growing
by 2D surface nucleation mechanism, i.e. by
considering only the effect of growth
mechanisms [AC/(1/B)] and omitting that of
concentration gradients [AC/3]. As pointed
out already that would be true if growth was
dominated by the kinetic mode. The
features of albite occurrence, as described
by Kastner, Waldbaum (1968), are strongly
suggestive of transport control in support of
the alternative model proposed above. It is
interesting that Kirkpatrick (1981) in his
discussion of the kinetics of magmatic
crystallization has emphasized the rarity of
the diffusion mode in igneous environ-
ments. It may well be that in authigenic
crystallization taking place under complete-
ly different conditions this mode, characte-
rized by hyperbolic patterns producing non-
stationary morphologies, is the dominant
growth kinetics.

Parabolic trajectories. In the titanaugite
pattern of Gray (1971; see also Part I}, the

23



kinematic relations of the two {010} faces
have given V_/V, = 1.5, Their symmetry
equivalence excludes  differences. The
simplest assumption of equal AC’s in front
of the faces gives 1.5 = (1 +B8/D)/A1 +
Bo_/D) from which (§,-1.58_,) = D/2B
meaning that a constant Ad, responsible for
the unequal development of faces, has been
maintained during growth. For the face
(001) we have obtained in accordance with
the AM model Vy o« t, which leads us to the
Hstirring® mode with 6 diminishing during
growth. Since solution flow directed only to
(001) can be safely excluded, there remains
the alternative of interface motion towards
the bulk solution as discussed in a previous
section (Fig. 2d). The low kinetic resistance
along the growth direction required for that
case is readily explained by the structure of
chain silicates. This picture of the process is
again at variance with that of Gray (1971)
who inferred diffusion-controlled growth of
{010} and kinetics-controlled one of (001).
In an unstirred solution, however, that
would 1mply slower rate of the latter form in
disagreement for instance with the structu-
ral properties of titanaugite. This and the
previous example show the advantages of
an analysis in more general terms for
pinpointing the major factors responsible
for specific effects in complex situations.

Oscillatory patterns. As illustrated in Part [
by the OM model, if certain special
conditions are not satisfied to give rise to
straight (or curved) edge paths, any
repeated variation of the rates of adjacent
faces will produce an undulated (periodic)
trajectory. Chernov’s expression for rate-
dependent uptake of impurities clearly
distinguishes the possible causes of varia-
tions: either external, imposed on the
interface kinetics [AC/( 1/8)] from the
environment outside the boundary layer, or
interfacial, involving an interplay between
[AC/(1/B)] and [AC/(Dy/d;)] inside the
boundary layer, or a superposition of the
_two. Thus, it provides a useful tool for
kinetic analysis of patterns subject of much
recent study and debate as to the relative
role of the above processes (e.g. Holten et
al., 1997). Generally, purely external proce-
sses would produce variations of lower
frequency that may or may not affect the
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crystal depending on the total time of
growth which may be as short as a few days
(e.g. the estimates of Shimizu, 1990, for
augite phenocrysts). There is no constraint
of this sort in interfacial processes as
follows for instance from the reaction-
transport autocatalytic mechanism propo-
sed by Ortoleva (1990) for solid solutions.
High-frequency oscillations imposed on a
sector boundary are shown in Fig. 4c of
Part [, and Gray (1971) have described the
already discussed parabola in titanaugite as
marked by concentric oscillatory zoning.
The additional fact that these short-wave
oscillations are coupled with such a local
phenomenon as distorted shape makes a
hypothesis for external control extremely
unrealistic in that example. Another
illustration of the feedback mechanism of
Ortoleva (1990) is the pattern in arsenopy-
rite (Vesselinov, Kerestedjian, 1995) some
features of which have been illustrated in
Fig. 4f of Part I. The kinematic reconstruc-
tion has also shown that continuous rate
oscillations may produce seemingly discon-
tinuous compositional changes implying
that the simpler, continuous model of
Ortoleva (1990) may turn out to be
applicable in cases for which sharp
compositional variations have been ascri-
bed to sharp rate changes without actually
testing the kinematics. Edge trajectories
provide the means for such tests as well as
measurable quantities such as wavelengths
and amplitudes which, combined with com-
positional characteristics, are of key import-
ance for detailed modelling of oscillatory
patterns in the framework of Ortoleva’s
theory.

Conclusion

Sunagawa (1993), in addition to his note
that the emphasis in modern mineralogy
has shifted from studies of equilibrium
states to mineral kinetics, wrote also that
»We have at present no method to evaluate
quantitatively the growth rates or the time
required to complete the growth based on
the characterization of single crystals®. It
has been argued here that the analysis of
internal morphological patterns can help to



fill in this gap using the following procedu-
re. Prepare oriented crystal sections
(Vesselinov, 1997) and expose the edge
trajectories of crystal forms during growth.
Measure the edge paths and express them
in terms of Laemmlein’s rate ratio func-
tions, then use model rates to ,,grow” crys-
tals by the computer which satisfy the
measured kinematic relations (Part I, Ves-
selinov, 1998). Finally, use Chernov’s mo-
del as a guideline in an analysis of the kine-
tics underlying the observed kinematics as
proposed in this study. In this way the
quantitative kinematic information, implici-
tly present in single-crystal edge trajectories
and derivable with great accuracy, can be
related to the evidence already available
from observations in nature and laboratory
experiments. Thus, the proposed procedure
provides means for testing various mineral
formation models both on small and large
scales and prepare the basis for more
thorough kinetic analyses by the modern
theories of crystal growth.
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