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Evidence of boninitic type magmatism in the Variegated
Formations from the East Rhodope
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Abstract. The Variegated Formations of the eastern Rhodope Mountains are composed of alternating igneous
rocks and sediments with a high-grade metamorphic overprint. Numerous ophiolitic slivers are associated
with these formations. They comprise metamorphosed peridotites, ultramafic cumulates, and amphibolitized
eclogites. The ophiolites (intensively dismembered) usually form the basement of the Variegated Formations.

The metaigneous rocks of the Variegated Formations occur either as layers interbedded with
metasediments, or as intrusive bodies that intersect the ultramafic rocks. The principal phases in the
metabasites are amphibole + plagioclase + quartz + epidote + garnet + chlorite. We calculate temperatures of
630°C to 520°C at pressures of 6-2 kbar, indicating moderate amphibolite facies metamorphism. Major rock
forming minerals (amphibole, plagioclase, and garnet) exhibit zoning typical of retrograde P-T conditions.

The chemical composition of the studied metaigneous rocks indicates boninite and arc-tholeiite
affinities. They include low Ti and Zr content and also the key ratios of CaO/TiO,, Al,O4/TiO,, Ti/Zr, Ti/Y
and Zr/Y, all transitional between island arc tholeiites and boninites. Plotted on a variety of discrimination
diagrams, the metabasic rocks of the Variegated Formations fall mainly in the fields of modern boninites and
arc tholeiites. The chondrite-normalized REE patterns reveal the existence of two different trends: U-shaped
REE patterns (for the majority of samples) and LREE depleted patterns. Regardless of the existence of these
two trends, the [La/Sm]y ratios of the metabasites perfectly coincide with the same ratios for many Cenozoic
boninite series. The metasedimentary rock types contain terrigeneous materials (metapsammites and
quartzites) that frequently alternate with metapelites and marbles. The nature of this sedimentary package
reflects its flysch character. '

The clear boninitic and arc-tholeiite affinities of the igneous rocks, as well as the character of the
sedimentary sequences, indicates that the Variegated Formations formed in an oceanic island-arc
environment. The mentioned affinities of the meta-igneous rocks indicate an origin in an immature arc. The
character of the Variegated Formations and its association with the dismembered ophiolite slivers shows the
presence of a suture zone. The East Rhodope suture zone distinguishes the Variegated Formations from the
rocks structurally below it, which consist of orthogneisses typical of continental crust. Existing U-Pb zircon
data indicate that the orthogneisses are of Variscan age. New U-Pb zircon age data for the Variegated
Formations suggest Late Neoproterozoic ages for some protoliths.
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Pesiome. IIncTpute cButH ot H3rounure Ponond ca H3rpafeHH OT AITEPHHpAlld MarMeHH CKajid U
CeIMMEHTH, 3aCETHATH OT BHCOKOCTeneHeH MeTaMopduszsM. MuoroGpoiinu odHonuToBH GJ0KOBE acOLMHpaT
¢ IBCTPUTE CBUTH. BiIoKOBETE Ca M3rpafieHH OT MeTOMOpP(O3MpaHy NEPHAOTHTH, YATpaMadH4yHH KyMyJaTH U
ampubonuTH3upanu exnoruTd. OpHoNuTHTe (MHTEH3HBHO PAa3wICHEHH) IPHHIHITHO U3rPAX/AT QyHAaMEHTa
Ha IIbCTPHTE CBUTH.
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MetaMop¢o3upaHHTe MarMaTHTH OT MBCTPHTE CBUTH HOPMUPAT HIIM MOCTIONHH TeNa, alTepHUpPaLIH C
METAaCEeIMMCHTHTE, WM KaToO WHTPY3UBHHM Tena npecudar ynrtpamabdurtute. I'naBHuTe ckanoobpasysauiy
MHHepany Ha MeTabasuTuTe ca: aMpuGOI + IWIarHoKkias + KBapl + eNHAOT + rpaHaT + XJIOpUT. M3uncienuTe
Temneparypu 0T 630°C mo 520°C npu Hamarasus ot 6-2 kbar, couorar ymepen adpuGonutoB dauuec Ha
MeraMoppH3sM. YCTaHOBEHaTa 30HAJIHOCT Ha TJIABHHTE CKanoobpasyBalnn MnHepénn (amdubon,
IJIarHOKJa3, rpaHaT) O4epTaBa PETPorpajeH Xo Ha MeTaMopdu3Ma.

XUMHUECKHAT ChCTaB HA M3CICABAHHUTE METAMarMaTUTH T'M XapakTepusupa KaTo GOHUHHTH U
OCTPOBOIABLIOBH TONEHTH. 3a TAX ca xapakTepHH HUCKH Ti ¥ Zr chbAbpKaHUA, KAKTO M THITHYHH CHOTHOWIEHHS
Ha CaO/TiO,, Al,04/TiO,, Ti/Zr, Ti/Y, Zt/Y - BCHUKMTE NMPEXOZHH MEXIYy OCTPOBHONBIOBH TOJEHTH H
GonuHuTH. BBpXy pefuua AUCKPUMHHALMOHHM AMarpaMud meTabasuTHTe OT MBCTPUTE CBHTH NONAJAT B
noneraTa Ha ChBpeMeHHUTe GOHHHUTH M OCTPOBOABIOBH TONEMTH. XOHAPHT-HOPMHpPAHHTE pasnpeleieHus
Ha REE paskpuBaT NPHCHCTBHETO HA ABa TpeHaa: U-ob6paseH (TUNHYeH 32 GOHHHUTHTE) H TaKbB C HEJOCTHT
Ha nekn REE. He3aBHCMMO OT NpPHCHCTBHETO HA ABAaTa TpeHAa, OoTHoweHueto [La/Smly B Merabasurute
neppexTHO ChBNAJa C TOBA Ha MHOrO KAaMHO3OWCKM OOHMHHTOBM CepuH. MeTaceaUMEHTHUTE CKalM
CBABPKAT TEPHreHHH KOMIOHEHTH (METAalCaMHTH M KBapLHMTH), YECTO AITCpHHPAlld C METaNeIHTH U
MpamopH. EcTecTBOTO Ha CEMMEHTHHTE CKATHH THIOBE OTPa3sBa TeXHUsS QIIHILKH XapaKTep.

SlcHuTe GOHMHHTOBH M OCTPOBHOXLIOBO-TONIEHTOBH OCOOCHOCTM Ha MarMEHHTE CKalH, KakTo W
XapaKTepbT Ha CEAUMCHTHHTE NMOCNEHAOBATEIHOCTH OTpasABaT (aKTa, 4e IIBCTPUTE CBHTH ca GOPMHpAHH B
yCNIOBUAT2 HAa OCTPOBHa [bra, HaACTPOEHA BBPXY oOkeaHcka kopa. CHoMeHaTHTe OCOGEHOCTH Ha
MeTaMarMeHHTe CKamd CBHIETENCTBYBAT 33 NPOH3XONA WM B YCJOBHATA HA HEpa3BUTa OCTPOBHA Ibra.
XapakTepsT Ha NBCTPHTE CBUTH M TAXHATAa acouMalus ¢ 6JIOKOBe OT paswieHeHH ODMONMTH MOKa3Ba
HAJIMYUETO HA CYTyDHA 30Ha. MI3TOYHOPOAONCKATA CyTYPHA 30HA PA3rPAHUHUABA ITLCTPUTE CBHTH OT TAXHATA
MOUIONKKA, M3rpajieHa OT OpPTOrHalic - THINMYHM 32 KOHTHHEHTajHa kopa. CeiectByBamure U-Pb
IMPKOHOBH JaHHHM OTpa3sBaT BapuHCKaTa BB3PAacT HA OPTOTHAMCHTE OT KOHTHHeTranHara Kopa. Hosu U-Pb
LUPKOHOBH OIPE/ICNICHHA COYAT HATMYHETO HA KBCHO HEOTIPOTEPO3OHCKH TIPOTONIUTH CPEJi ECTPUTE CBHTH.

Introduction

The Variegated Formations of the eastern The goal of this paper is to clarify the
Rhodope Mountains (SE Bulgaria) form part of  origin and the significance of the igneous rock
the pre-Alpine basement of this region assemblages and to determine if there is a
(Kozhoukharov et al., 1992). They are compo-  connection between them and the adjacent
sed of alternating metamorphosed sedimentary remnants of oceanic crust marked by the
and igneous rocks, including metagabbros and Rhodope ophiolite association. The relation-
amphibolites, felsic orthogneisses, metapelites ship between these rock units has important
and metapsammites, and marbles. The total implications for the geodynamic significance
thickness of the Variegated Formations in the of the structure and evolution of the Rhodope
area studied is 1800-2900 m, and their rocks Massif. We have selected rocks from the
record a high-temperature amphibolite facies Variegated Formations of the Avren Synform
metamorphic overprint. Numerous ophiolite and the Bela Reka Antiform, close to the
bodies of the Rhodope ophiolite association Bulgarian-Greek border, to conduct structural,
(metaperidotites, metacumulates, and amphibo-  petrographic, and geochemical studies on these
litized eclogites) are associated with the Varie- assemblages.

gated Formations. The close spatial relation- The Rhodope massif is part of the
ship between the dismembered Rhodope Thracian micro continent (after Bondev, 1986),
ophiolite bodies and these formations is well ~which we regard as a composite superterrane
known, and the ophiolites form their base and represents an element of the Variscan belt
(Kozhoukharova, 1996). This poses a question  of Europe. Its pertinence to the mentioned belt
regarding a possible genetic connection is evidenced by features such as the develop-
between the mafic and ophiolitic rock ment of voluminous Variscan granitoid mag-
sequences. matism (~340-238 Ma, Zagordev, Moorbath,
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Fig. 1. Geological map of the East Rhodope (after Kozhoukharov et al., 1992) with modifications and

additions

®ur. 1. l'eonoxka xapra Ha Mzrounnre Pogonu (o Kozhoukharov et al., 1992) ¢ u3MeHeHus M AOMBIHEHHS

1986; ~331-250 Ma, Peytcheva, von Quadt,
1995). The Thracian composite superterrane
together with the Balkan unit forms the
Variscan orogen in Bulgaria.

Geological setting of East Rhodope

The larger bodies of the Rhodope ophiolite
association are concentrated in the East
Rhodope, as well as the large amounts of
metabasic igneous rocks of the Variegated
Formation. Additionally, the eastern part of the
Rhodope massif has a comparatively lower
degree of alpine metamorphism than the central
and western parts of the Rhodope massif,
where anatexis and migmatization occur in the
felsic portions of the sequence. Moreover, the
influence of the Late Cretaceous and Tertiary
large intrusive bodies in the Rila and Pirin
Mountains (West Rhodope) is lacking, and the
rocks from East Rhodope are not significantly
affected by later thermal perturbations.

57

Geological features of the Variegated
Formations

Several types of sedimentary rocks are
recognized among the components of the
Variegated ~ Formations.  Quartzites and
metapsammites  alternate with metapelites
(Anguelova, Kolcheva, 2001). Marbles, with
layers up to 80 m thick, as well as calcschists,
are typical for these formations. The wide
variety and the composition of these sediments
reflect the flysch character of the Variegated
Formations (Kozhoukharov, 1987).

The orthoamphibolites occur as layers and
slices that are interlayered with the meta-
sediments (in the Avren Synform), or as
intrusive bodies intersecting the ultramafic
fragments of the ophiolitic units (mainly in the
Bela Reka Antiform - Fig. 1). The ortho-
amphibolites of the Avren Synform have been
studied in two localities. The first is the meta-
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gabbro body south of Bubino (Fig.2), which is
transformed into banded amphibolites in its
outer parts. This elongated body, with a
thickness of ~ 200 m alternates with biotite and
two-mica gneisses and with marbles. The
second study area is situated directly to the east
of the large Avren ultramafic body. In this
locality orthoamphibolites alternate  with
marbles that are part of the marble body shown
on Figure 2. Locally the thickness of the ortho-
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amphibolite layer can attain 100 m.

The relationship between the ortho-
amphibolites and the ultramafic rocks was
studied in the Bela Reka Antiform, where they
build up the limbs of a dome structure (Cara-
bunar dome). This relationship was observed in
Hambar Dere (1), west of the village of
Boturche (2), and to the northeast of the village
of Zhalti Chal (3 - see Fig. 1 for map
locations). These metabasites intersect the



ultramafic bodies, and contain xenoliths of the
ultramafic rocks that are typically altered to
actinolite-talc or talc-chlorite schists along
their edges. In some localities the metamafic
rocks from Bela Reka Antiform were
metasomatically altered into tourmaline
bearing metagabbro-pegmatites, or into
clinozoisite-clinopyroxene rodingite-like rocks
(Zhalti Chal; Hambar Dere - Fig. 1).

Orthoamphibolites are widespread in the
Variegated Formations. They are fine- to
medium-grained, mesocratic to melanocratic
rocks showing variable amounts of post-
magmatic shearing. They are massive in the
internal parts of the bodies, and usually foliated
in their outer parts, with rare relics of ophitic
textures preserved. The igneous activity had
multistage character as reflected by the
crosscutting relations of compositionally and
structurally  different dikes and large,
irregularly shaped bodies from the Bela Reka
Antiform. Fine- to medium-grained melano- to
mesocratic metagabbro to metagabbro-dioritic
bodies crosscut serpentinized peridotites. The
rocks of these bodies are not always
homogeneous. We observed melanocratic and
leucocratic nebulous portions with rapid
transitions between these textures. These
bodies are intruded by fine- to medium-grained
melanocratic metagabbro or metagabbro-
dioritic dikes that also intrude the serpentinites.
All rocks of the considered bodies are recry-
stallized but not intensively foliated. Some of
the fine-grained amphibolites, interlayered with
parametamorphites, may represent preserved
parts of metavolcanic sequence.

Analytical methods

We used JEOL JXA-8800 SuperProbe at the
Florida Center for Analytical Electron Micro-
scopy at the Florida International University in
Miami to determine the chemical composition
of rock forming minerals. Microprobe
operating conditions for wavelength dispersive
analyses included an accelerating voltage of 15
kV, a 20nA current, and a spot size of 1-2 um.
Counting times were 10s for each element,
with a background count of 5 s.
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Analyses of whole rock major and trace
elements were performed via several methods.
Bulk rock major elements were determined by
wet chemical analyses, Cu, Zn, Pb, Ni, and Co
by AAS using a Perkin-Elmer Spectro-
photometer 3030, and Rb, Ba, Sr, Cr, V, Zr,
and Y were analyzed by XRF using a VRA-2
spectrometer. All the analyses were performed
in the Research Geological Laboratory at the
Geological Institute of the Bulgarian Academy
of Sciences. Rare earth elements (REE) and Y
abundances were measured via a HP 4500 plus
Series 200 ICP-MS at the College of Marine
Sciences, University of South Florida, St.
Petersburg, FL, USA. Data were normalized to
repeat analyses of the certified geochemical
reference samples (USGS basalts; BIR-1, UB-
N; NBS688 and W-2), with reproducibility on
the order of 5% to 10%.

The rock samples of the investigated
orthoamphibolites are deposited in the
Geocollections of the Geological Institute (N
MER.1. 03. 10)

Petrography and mineral chemistry of
the metabasites

The rock forming minerals in the investigated
orthoamphibolites are amphibole + plagioclase
+ quartz + epidote + garnet + chlorite.
Accessory phases include titanite, apatite,
rutile, magnetite, and zircon. Amphiboles are
the dominant minerals in most of these rocks.
They are sub- to idioblastic green nemato-
blasts, coarse-grained in Bubino and Avren
rocks and medium-grained in the rocks from
Bela Reka Antiform. Large S;-amphibole
porphyroblasts (0.2-0.5 cm) occur in Bubino
metagabbro. They are surrounded by S»-
prismatic amphiboles, defining clear foliation
in the outer parts of the body. The large
amphibole porphyroblasts contain numerous
rounded quartz inclusions. Very rare garnet
grains are included in the periphery of some
porphyroblasts. All amphiboles can be
classified as Ca-amphiboles according to the
classification of Leake et al. (1997) and show a
tschermakite to magnesio-hornblende compo-
sition (Table 1, Fig. 3a).
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Amphiboles from Bubino are mainly
tschermakites. The fine-grained amphiboles
and the rims of some large grains are
magnesio-hornblendes. Amphiboles from all
other studied localities are Mg-rich hornblende,
with exemption of one mineral analysis from
Hambar Dere.

Plagioclase crystals from the Boturche
and Hambar Dere samples are completely
recrystallized into fine-grained aggregates. In
contrast, plagioclase grains from the Avren
samples are coarse-grained and prismatic. In
places from all these localities, magmatic,
euhedral grains are partly preserved. An-
content ranges from 33.2 to 18.3 mol % (Table
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2) for most samples, but high An-contents in
the range of 55.9 to 92.3 mol % occur in
metagabbros from Bubino. In this body, coarse
plagioclase prismatic grains are intensively
deformed and recrystallized into subhedral
grains with fine polysynthetic deformational
lamellae or micro-grained aggregates. The
recrystallized outer portions of large plagio-
clase grains show low An-contents (55.9-66.1
%) while the cores of the grains display higher
An-content.

Granoblastic quartz occurs as single
grains, or with plagioclase in leucocratic bands
in the foliated outer parts of some bodies.
Euhedral coarse-grained or anhedral fine-
grained epidote and zoisite usually grow at the
expense of plagioclase. Garmnet occurs very
rarely in more leucocratic portions of the
metabasic bodies from Hambar Dere and
Boturche. In the Bubino metagabbro, garnet is
found in the outer, banded parts of the body.
Its composition is Alm 61.2-56.3; Gross 20.5-
17.4; Prp 20.1-19.2; Spess 3.8-2.1. Pyrope and
almandine components decrease slightly from
core to rim, while the spessartine component
increases slightly.

Metamorphic P-T conditions

The absence of relics of igneous minerals and
the observed microstructural relations indicate
that the protoliths of the studied metamorphic
rocks are completely recrystallized and mineral
assemblages are re-equilibrated. In some loca-
lities, however, traces of magmatic ophitic or
porphyritic textures are still preserved, espe-
cially in the Bubino gabbro.

The chemical zonation from core to rim in
plagioclase, amphibole, and garnet reveals the
simultaneous decompression and cooling path
of the metamorphic evolution of the
investigated rocks. P-T estimates are based on
mineral phases in equilibrium. Generally, the
pressure and temperature determinations of the
orthoamphibolites from the localities of
Boturche, Hambar Dere, and Avren indicate
moderate amphibolite facies metamorphism.
The temperatures estimated using the Holland
and Blundy (1994) thermometer range from
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Table 2. Chemical composition of selected plagioclases from the metabasic rocks
Tabnuua 2. Xumuunu cocmasu Ha u3bpanu nIG2UOKNA3YU OM MEMABA3UNHU CKANU

Sample | 817- | 817- 1005- | 1005- | 46b- | 46b- | 1009- | 1009- | 1009- | 1009-| 1009-
2b 2d la 4b 2b 3b 4c 10c core {10d ri 3b 1b

Location Boturche Hambar Dere Avren Bubino

SiO, 64.04 6336 60.04 6231 6192 62.01 4549 4736 5291 47.18 53.83
TiO, nd. n.d. 0.01 001 nd. nd n.d. nd. nd nd n.d.
ALO; 2164 2237 2459 2303 2342 2298 3380 3271 2931 3239 2842
FeO 0.11 16.00 6.00 0.14 1.00 0.02 0.15 037 044 021 0.35
MnO n.d. 0.03 nd. nd. nd nd nd. nd. nd nd 0.05
MgO n.d. n.d. n.d. nd. nd nd n.d. nd. 002 nd n.d.
Ca0 3.95 4.59 6.98 518 565 471 1842 1649 1220 1676 11.69
NaO 9.70 9.39 7.5 9.03 8.19 856 0.83 1.84 444 157 5.07
K,0 0.05 0.06 0.02 0.06 0.14 0.16 0.03 003 0.05 0.03 0.03
Total 99.49 9996 9945 99.76 99.42 9844 98.72 98.8 99.37 98.14 99.44
Ab 814 78.5 66.7 75,7 718 76.0 7.5 168 39.6 145 43.9
An 18.3 21.2 33.2 240 274 231 92.3 83.0 60.1 854 55.9
Or 0.3 0.3 0.1 0.3 0.8 0.9 0.2 0.2 0.3 0.2 0.2

Note: n.d.- not detected
3abenesxka: n.d. - MOA OTKPMBAEMHA MUHHMYM

630°C to 525°C, and from 550° to 520°C using
the Pluysnina (1982) thermometer (Fig. 3b).
These results are similar to other authors who
have previously reported that the Holland and
Blundy (1994) thermometer produces higher
temperatures for meta-basites (e.g., Nasir,
Okrusch, 1997; John et al., 1999).

Pressure determinations using the Al-in-
hornblende barometers and the calibrations of
Hammarstrom and Zen (1986), Hollister et al.
(1987), and Schmidt (1992) yield mutually
comparable pressure values for most samples.
For the Boturche locality, the estimated
pressures are 4-2 kbar; 5.5-4 kbar for Hambar
Dere; and 6-5 kbar for Avren. The pressures
after the barometer of Plyusnina (1982) are
generally in accordance with the pressure-
estimates obtained by the Al-in-hornblende
barometers (Fig. 3b).

Pressure and temperature determinations
for the Bubino metagabbro are somewhat
different. The estimated high pressures (from
11 to 5 kbar), very high An-content in plagio-
clase (Ang,—Angs) and the high tschermakite
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substitution in the inner parts of the large
amphibole grains show high-grade metamor-
phic conditions at the amphibolite-granulite
facies boundary (see also Bucher, Frey, 1994).
The clear foliation in the periphery of the
metagabbro body is well marked by S,
amphibole-garnet-epidote  assemblages and
plagioclase-quartz bands. Relics of S; high An
plagioclase are re-oriented along S,. The
temperatures  estimated by the Hbl-Pl
thermometer of Holland and Blundy (1994) are
780° to 680°C.

Geochemistry

Fifteen orthoamphibolite samples from the
Avren Synform and the Bela Reka Antiform
were analyzed for major, trace, and rare earth
elements. The metamorphism of these rocks
obscures their original minerals and textures,
and causes problems in classifying them.
Nonetheless, evidence for widespread meta-
somatic alteration is lacking, and the geo-
chemistry of these rocks is expected to mimic
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Fig. 4. CaO - Si0O, diagram for the orthoamphibolite
rocks from the Variegated Formations. Fields after
Spadea et al. (1998). Symbols are the same in Fig. 5
and 6

@ur. 4. CaO - SiO, mmarpama 3a oproampu6o-
JIMTOBHTE CKamd OT NBCTPUTE CBUTH. Ilomera no
Spadea et al. (1998). Cemmure cuMmBONH ca
H3MO/3BaHU HA QUT. S5H 6

the original bulk rock chemistry, especially
highly immobile elements. Special attention
was therefore given to the behavior of the
immobile HFSE (high field strength elements)
and REE, and patterns are compared to similar
analogous suites. The most striking features of
the rocks studied are their low Ti and Zr
contents. Plotted on the TiO, vs. Zr discri-
mination diagram (Pearce, 1980), they fall in
the field of volcanic arc basalts (not shown).
Characteristics such as CaO/TiO,, ALO5/TiO,,
Ti/Zr, Ti/Y, and Zr/Y ratios also support an
island arc affinity (Table 3). All are transitional
between island arc tholeiites and boninites.
The samples fall predominantly into the low-
Ca boninite group (with CaO/Al,03<0.75)
according to the classification by Crawford et
al. (1989). When plotted in the CaO vs. SiO,
classification diagram, our samples distribute
in the fields for high-Ca boninite, intermediate-
Ca boninite, low-Ca boninite, intermediate-Ca
andesite, and andesite (Fig. 4, after Spadea et
al., 1998). One sample (1004c) falls within the
dacite field. The investigated orthoamphi-
bolites have variable MgO contents (from 9.9
to 5.5 wt %), but their Mg-number values
(from ~0.75 to ~0.60, except samples 1009d,
1004c and 15b) are close to that of primitive
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mantle derived magmas (Bloomer, Hawkins,
1987). Elemental characteristics of these
samples are similar to Tertiary boninites of
Bonin Island, DSDP Site 458, and boninites
from Cyprus (Fig. 5a, except s.s. 1004c and
15b). The geochemical features of the
orthoamphibolites from  Avren Synform and
Bela Reka Antiform can be seen on the Mg-
number vs. TiO, diagram of Pearce et al.
(1992), modified by Wyman (1999) with the
field of Birch Lake Paleoproterozoic tholeiites
(Fig. 5b). Some of the orthoamphi-bolites
reside in the fields of DSDP Site 458 and
Zambales ophiolite boninites, one - in the Birch
Lake tholeiite field. The most primitive
samples- 46a, 46b and 75 fall in the MORB

10/- a8 MORB
rus ¥
o (U};")L, AFB) 5. Site 458
<:(~ A @ .‘ ’:)‘}( > CXPI'US
Q0.5 "+ $-Bonin,Papua; AKARI Canyon)
© S eI e Mariana Trench
Mariana Trench :
0 ! :
1 0.5 0
Mg#
I ) - site 458 boninites
gof Iii - Zambales ophiolite boninites
i IV - Birch Lake tholeiites
80!
l
;& 70{'
80|
|
50|P- b
40+ : :
0.1 1 10

Ti,Owt.%

Fig. 5a. CaO/Al,O; — Mg # diagram (fields after
Beccaluva, Serri, 1988); b. Mg # - TiO, diagram
(fields after Pearce et al., 1992, and Wyman, 1999)
®ur. 5a. CaO/AL,O; — Mg # nuarpama (monera no
Beccaluva, Serri, 1988); b. Mg # - TiO, auarpama
(nmonera no Pearce et al., 1992; u Wyman, 1999)
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field. It should be noted, however, that rocks
from both the Avren Synform and the Bela
Reka Antiform regions fall in the boninitic,
tholeiitic and MORB fields of this diagram.
Taylor et al. (1992) used Zr/Y ratios to
distinguish between arc (Zr/Y< 2) and either
fore- or back-arc setting (Zr/Y>2). On this
basis the investigated orthoamphibolites from
Avren Synform fall in the first group, and these
from Bela Reka Antiform in the second one.
The rocks from the first group also have higher
Ti/Zr and Ti/Y ratios in comparison with those
from the second group. And finally, on the
TiO,-10xMnO-10xP,05 discrimination dia-
gram of Mullen (1983), our rocks cluster
between the island-arc tholeiite (IAT) and the
boninite (BON) fields (Fig. 6).

A characteristic signature of boninite and
boninite-like rocks is their chondrite-
normalized REE patterns. (Table 4). Many
authors observed that the U-shaped REE
pattern is characteristic for the boninites
(Hickey, Frey, 1982; Hawkins et al., 1984;
Coish, 1989). However, there are also
examples of boninitic rocks with light REE
(LREE) depleted patterns (Marianas, New
Caledonia, Lau Basin, after Crawford et al.,
1989; Cameron, 1989; Hawkins, 1995). The
investigated rocks exhibit two distinct patterns
(Fig. 7). The first pattern (samples 46a and

[La/Sm]n=0.49) and flat to slightly depleted
heavy REE (HREE) patterns (avg.
[La/Yb]n=0.44), with distinctive positive Eu
anomalies (Eu/Eu* - 1.42 and 1.76 — Fig. 7a).
The second group shows characteristic U-
shaped boninite-like RE{_E C)pa\tterns (high avg.

i0,

N

/ \

\ o
/ \MORB\\

IAT \
/ BON\( 0\—'\_(\/ OlA
/ . \\

/
C o N
MnOx10 P,O,x10

Fig. 6. 10xMnO-TiO,-10xP,0s discrimination dia-
gram of Mullen (1983). Fields: IAT island-arc
tholeiite; BON boninite; CAB calc-alkaline basalt;
OIT ocean island tholeiite; OIA ocean island alkali
basalt

@ur. 6. 10xMnO-TiO,-10xP,0; auckpuMHUHaLH-
oHHa jguarpama no Mullen (1983). ITomera: IAT
ocTpoBHOABroBH TolleuTH; BON Gonunutn; CAB
KanuueBo-ankayHy  6asantu; OIT  okeaHCKu
ocTpoBHH ToneuTH; OIA OKeaHCKM OCTPOBHH
anKanHu 6azantu

46b) shows LREE  depletions (avg.

Table 3. Notes

Samples: Avren: s. 46a and 46b - mesocratic coarse- to medium-grained metagabbro; Bubino body: s. 15 -
porphyritic coarse-grained metagabbro from the central part; s. 15b - partly foliated metagabbro; s. 1009d -
foliated and banded metagabbro from the outer part; Hambar Dere: s. 1004c, 1005¢ and 831 - fine- to
medium-grained metagabbrodioritic irregular body, cross-cutting serpentinized peridotite; s. 1006 -
melanocratic fine-grained metagabbrodiorite dike, cross-cutting the metagabbrodiorite body; Boturche: s. 817
and 817-1 - melanocratic fine- to medium-grained metagabbrodiorite; Zhalti chal: s. 74 - metagabbroic dike,
cross-cutting serpentinized peridotite; s. 75 - metagabbroic irregular body, cross-cutting serpentinized
peridotite; s. 76a - fine-grained metagabbroic dike, cross-cutting metagabbroic irregular body (s. 76b), which
intersects serpentinized peridotite

OGpasuu: ABpen: o6p. 46a, 46b - me3okpaTHO rpy6o A0 CpemHO3bPHecTO: Merarabpo; By6uHo: 06p.15 -
nop$HpHO rpy603bpHECTO MeTaraGpo OT HeHTpanHaTa 4acT; o6p. 15b - yacTHYHO HalMcTeHO MeTaraGpo;
06p. 1009d - nammcTeHo U MBHYecTO MeTarabpo OT BBHIIHATA YacT; XamGap mepe: o6p. 1004c, 1005c¢, 831-
GHHO 0 CPENHO3BPHECTO METarabpoAHOPHTOBO TANO, CEKYLIO CEPNEHTHHH3MPAH NMEpHAOTHT; o6p. 1006 -
MeNIaHOKpPaTHAa GMHO3BPHECTA MeTaraGpoAHOPHTOBA JaiiKa, CEKylla MeTaraGpoAHOPUTOBOTO TAIO; BoTypue:
obp. 817, 817-1 - MenaHokpateH ¢UH N0 cpemHo3bpHecT Merarabpoawoput; JKbatu wam: obp. 74 -
MeTarabpoHOpHTOBa Jaiika, CeKylia CepneHTHHM3HpaH NEepPHAOTHT, o6p. 75 - HempaBHIHO MeraraGpoBo
TAJIO, CEKYILO CEPNEeHTHHU3HPaH NEPHAOTHT; obp. 76a - PuHO3bpHecTa MerarabpoupaHa Haiika, cexyila
MeTarabpoBo HenmpaBHIIHO TAJIO (06p. 760), KOETO € BHEAPEHO B CEPNIEHTHHH3HPAH NEPUAOTHT
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Fig. 7. Chondrite-normalized REE pattern for ortho-
amphibolite rocks studied: a. LREE depleted pattern
in samples from Avren Synform; b. U-shaped REE
pattern in samples from Avren Synform and Bela
Reka Antiform; c. fields for ODP Leg 125 boninites
after Pearce et al. (1992) and for Bonin Island
boninites after Shimizu et al. (1992). Data are
normalized to C1 chondrite of Sun and McDonough
(1989)

[La/Sm]n=1.34), moderately elevated compa-
red to group one but on the whole low (avg.
[La/Yb]n=0.87) indicative of both LREE and
HREE enrichment. For this group, varying Eu
anomalies from 0.80 to 1.93 were observed
(Fig. 7b). The positive Eu anomaly in most of
the metabasites suggests plagioclase accumu-
lation. We believe that the analyzed rocks,
although metamorphosed to T 630-525°C and
P 6-2 kbar, reflect the REE abundances of the
protoliths (as shown by Sun, Nesbitt, 1978).
Moreover, earlier investigations of Sorensen
and Grossman (1989) and Berger et al. (2001
and references therein) indicate that REE
remain immobile under relatively high-grade
metamorphic conditions. On the basis of their
REE patterns, we believe that samples 15, 15b
and 75, which often fall out of the fields of
other diagrams, are in fact boninites. Despite
the differences in the REE patterns in the
studied rocks, the comparison with the Tertiary
West Pacific boninites (Fig. 7c) shows that our
rocks overlap the fields of ODP Leg 125
(Pearce et al., 1992) and Bonin Island boninites
(Shimizu et al., 1992). Similar diverse REE
patterns were reported for Nepoui and Koh
boninite sequences from New Caledonia
(Cameron, 1989).

Regardless of some minor differences in
the chemical composition of the rocks from the
Avren Synform and the Bela Reka Antiform,
they both preserve evidence for protoliths with
island arc tholeiite and boninite character.
According to Bazylev et al. (1999), parts of the
ultramafic bodies and metatholeiites were
formed in a supra-subduction zone setting.

Qur. 7. XOHAPUT-HOPMUPAHO pa3Mpelc/ieHHe Ha
REE 3a wscnensanute oproaMpuGONUTOBH CKaly;
a. obeaneHo Ha neku REE pasnpenenenune B npo6u
ot AspeHckara cuHpopma; b. U —obpasHo pasmpe-
nenenne Ha REE B npoGu or ABpEHCKATa CHH-
dopma u Benopeukara antudopma; c. nore Ha ODP
Leg 125 GonunuTn no Pearce et al. (1992) u Ha
GoHuHMTH OT ocTpoB Boinin mo Shimizu et al.
(1992). Nanuute ca Hopmupanu kuM Cl xoHzpura
ot Sun & McDonough (1989)



Table 4. REE content in the metabasic rocks, ppm
Tabnuua 4. Cvovpoicanue na REE 6
Memabazuynume ckanu, ppm

Avren Bela Reka

Synform Antiform
46a 46b 15 15b| 74 T6a 76b
La 0.88 0.55 0.64 094 0.62 3.11 1.66
Ce 238 1.75 1.60 2.35 1.34 7.55 4.02
Pr 0.46 0.31 0.20 0.34 0.15 1.12 0.60
Nd 2.68 1.92 0.85 1.73 0.64 5.35 2.95
Sm 1.12 0.85 0.28 0.72 0.18 1.60 0.93
Eu 0.63 0.61 0.14 0.25 0.14 0.54 0.36
Gd 1.69 1.34 0.45 1.32 0.27 2.01 1.20
Tb  0.31 0.25 0.09 0.27 0.05 0.34 0.21
Dy 213 1.73 0.74 2.15 045 226 1.44
Ho 045 037 0.18 0.52 0.11 0.48 0.31
Er 1.31 1.10 0.60 1.75 0.39 1.46 0.95
Tm 0.18 0.15 0.09 0.28 0.06 0.21 0.14
Yb 1.18 098 0.72 2.02 0.48 1.45 0.97
Lu 018 0.14 0.12 0.33 0.08 0.22 0.15

Discussion

The comparison of the investigated rock
assemblages with sequences characteristic of
certain geodynamic settings (i.e. island-arc,
forearc, back-arc, mid-ocean ridge) is an
important tool for identification of their genetic
identities.

We propose an origin for the Variegated
Formations and part of the associated Rhodope
ophiolite association as an ensimatic island arc
model (Haydoutov et al., 2000; 2001). Boninite
generation is observed during the initial stages
of the subduction (Crawford et al.,, 1989;
Pearce et al., 1992). Our model fits well with
the widely accepted early-arc development and
the associated rock types found in the Izu-
Bonin-Mariana subduction system (Bloomer et
al., 1995). Some facts indicate the presence of
different types of oceanic crust that are
identified as Rhodope ophiolite association.
The island-arc igneous boninites and tholeiites
do not intersect the eclogites, and some of the
ultramafic rocks of the Rhodope ophiolite

67

association have been proposed to also form in
a supra-subduction zone setting (Bazylev et al.,
1999). Alternatively, eclogites from the
Rhodope massif have affinities similar to
typical MORB (Kolcheva, Escenazi, 1988).
The eclogite/ophiolite/boninite ensemble could
be a tectonic association of two types of ocean
crust, the first one formed at a mid-ocean ridge
and underwent eclogite facies metamorphism,
and the second formed in a supra-subduction
zone setting and underwent later (Variscan?)
amphibolite facies metamorphism. A scenario
of repeated subduction episodes or subduction
polarity reversal could accommodate our
model.

The characterization of the Avren
Synform sediments as metamorphosed flysch
containing a greywacke level (Kozhoukharov,
1987) is an important feature, because such
sequences are characteristic of island-arc
environments. Examples of such flysch
successions are exposed on the Mentawai
Islands and Barbados Island (Mitchell,
Reading, 1971). Limestones, in association
with flysch, are also typical of island arc
related successions, especially those in
proximity to the island arcs. One example is
the Eocene-Pleistocene sedimentary-volcanic
sequence formed in the collision zone between
the North d’Entrecasteaux Ridge and the New
Hebrides (Vanuatu) Island Arc (ODP Site 829,
Reid et al., 1994). The association of sedimen-
tary rocks with boninitic and tholeiitic magma-
tites is typical for the successions of island-arc
settings - for example, in the Bonin trench
(Taylor et al., 1994). They are also found in
ancient island arcs, e.g. those connected with
the ophiolites Koh (Meffre et al.,, 1996) and
Bets Cove (Coish, 1989), the Cambrian island-
arc in Tasmania (Brown, Jenner, 1989), as well
as the Early Proterozoic Trans-Hudson orogen
(Wyman, 1999).

The problem for the age of the Variegated
Formations is important but in the same time
protolith ages for these rocks are almost totally
unknown. The new U-Pb zircon dating
suggests that the orthoamphibolites of these
formations crystallized in the Late Neopro-
terozoic, 572+5 Ma (Carrigan et al., 2003), but



this remains to be proved with more determi-
nations. Obviously the young ages established
in the Rhodope metamorphics (e.g. Liati,
Gebauer, 1999; Wawrenitz, Mposkos, 1997)
are result of the Alpine metamorphic overprint.

The eastern part of the Rhodope Massif
consists of antiformal cores (Bela Reka and
Kesebir) built up by metagranites, ortho-
gneisses and gneiss-schists (Kozhoukharova et
al., 1988; Macheva, Kolcheva, 1992) that are
typical of continental crust (Fig. 1). This
continental crust forms the Prarhodopian (pre-
Rhodope) Supergroup of Kozhoukharov et al
(1992). Existing U-Pb zircon data demonstrate
that the gneissic protoliths are Variscan in age
(~305-320 Ma, Peytcheva, von Quadt, 1995).
The synforms (Avren and Snejina) are built up
by the double-layered structure. The lower
layer consists of fragments of oceanic crust
(intensely dismembered, Kolcheva et al., 2000)
overlain by the orthoamphibolites and the
sedimentary components of the Variegated
Formations.

The whole double-layered assemblage is
thrusted over the continental crust (Fig. 1). The
contact between these two types of crust is
tectonic, and the double-layered assemblage is
allochthonous. In some localities, ultramafics
and eclogites are in direct tectonic contact with
orthogneisses, and shearing in the ortho-
gneisses becomes mylonitic as the contact is
approached. The Variegated Formations and
the Rhodope ophiolite association do not show
any evidence of contact metamorphism. The
rocks of the continental crust however are
intensively sheared. In most of the observed
localities the contact bears features of a deep
tectonic structure for which internal tectonic
imbrication is typical. A zone of intensively
sheared granitoids from 100 to 300 m thick
exists along the contacts. Rock slices from both
types of crust in the zone of tectonic
imbrication form a layer thick from 100 to 400
m. The position of the allochthon delineates the
East Rhodope suture. Along this suture, the
oceanic crust of probable Neoproterozoic age is
emplaced over the continental crust of Variscan
age. The surface of the suture zone is an
intensely folded, sub-horizontal plane in the
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East Rhodope block. The suture was formed
probably in Late Variscan time or later (?).

The ophiolite fragments from the
Rhodope massif have been .considered as
obducted ocean crust (Kozhoukharova, 1985;
Kolcheva, Eskenazi, 1988). Prior to obduction,
the two types of oceanic crust were tectonically
associated. Ricou et al. (1998) distinguished
continental and mixed units within the
Rhodope massif, the latter containing ophio-
lites. The close genetic and spatial relations of
the ophiolites and the Variegated Formations
are a reason to consider these formations as
element of the same suture. This is an
important feature of the suture taking into
account the highly dismembered character of
the oceanic crust that underlies the Variegated
Formations. The configuration of the suture,
mentioned by Burg et al. (1996) for the East
Rhodope, coincides with our understanding of
this structure. However, Burg et al. (1996)
describe an upper terrane with “mafic-ultra-
mafic-gneiss sequence” as well as intermediate
trust sheets with several sequences including
“eclogite-metabasic-gneiss sequence”, and they
do not distinguish between the suture and their
“syn-metamorphic nappe complex”.

Conclusions

The boninitic and island-arc tholeiitic charac-
teristics of the igneous rocks, the flysch
properties of the sedimentary components, the
presence of considerable amount of carbonates,
and finally the association with ultramafic
rocks, all suggests that the Variegated Forma-
tions were formed as an ensimatic island arc.
The described cross-cutting relation of the
orthoamphibolites with the ultramafic rocks of
Rhodope ophiolite association and the forma-
tion of this ultramafics in a supra-subduction
zone setting, all indicate possible genetic
connection between the Variegated Formations
and the mentioned relics of the oceanic crust.
The East Rhodopean suture zone sepa-
rates the Rhodope terrane, built up by the
Rhodope ophiolite association and the
Variegated Formations (Rhodopian Supergroup
of Kozhoukharov et al., 1992) from the Bela



Reka terrane formed by the Pre-Rhodope
(Prarhodopian, after Kozhoukharov et al.,
1992) Supergroup. We therefore consider the
Rhodope massif as a composite terrane, and the
Thracian micro continent of Bonéev (1986) as
a composite superterrane.

We suggest that the genetic unity of the
part of the ophiolites and the Variegated
Formations clarify the origin and structure of
the Rhodope Massif. Based on regional
correlations, the concept of a suture zone could
be useful for clarifying the structure of the
whole Rhodope composite terrane. The data
presented in Daieva and Pristavova (1998)
regarding the existence of arc tholeiites and
boninites from the Central Rhodope is an
important clue for the correlation of the
Variegated Formations from both regions and
as a consequence for clarifying their structure
and evolution.
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