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Moraine-hosted Cu-Bi-mineralization from the Modi-Khola
valley, southwestern flank of Annapurna-III, Central Himalaya
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Abstract. The Cu-Bi-Ag-Te mineralization found in moraine blocks in the central part of the Modi-Khola
valley, on the southwestern flank of Annapurna-1II in central Nepal can be defined as a new type post-
collisional hydrothermal system in the High Himalaya, related to a Miocene magmatic event of leucocratic
granite intrusions or equigranular pegmatite bodies. The mineral assemblage consists dominantly of
chalcopyrite and pyrite, with variable amounts of Bi-Ag sulphides, sulphosalts and tellurides (bismuthinite,
tetradymite, hessite, aikinite-bismuthinite derivates). [lmenite, magnetite, cubanite, garnet, rutile, chlorite and
quartz complete the mineral assemblage. Common complex intergrowth textures, involving aikinte, hessite
and tetradymite in highly variable proportions and forming equilibrium assemblages, resulted from
segregation and crystallization of “droplets” of Ag-Bi-Te-(S) “melts” from the hydrothermal fluids at
temperatures above the melting point of bismuth. Thus, the mineralization can be considered as mesothermal
ore formation, most probably resulting from a magmatic-hydrothermal system that was active during the mid-
Miocene in the Annapurna Himal.
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Kaaun Ky3manos, [UBan K. bones|, Pocuua /I. BacuneBa. Cu-Bi-muHepanu3amnusi B MOpeHH

oT JoauHaTa Ha peka Moau-Kxona, B morozanagnoro mnoanoxxue Ha Anamypua-IIIL,
Hentpannu Xumanan

Ab6crpakT. Cu-Bi-Ag-Te MuHepanu3aiys, HaMupaiia ce B MOPSHHHUTE OJIOKOBE OT LIEHTpalHAaTa 4acT Ha
JonuHaTa Ha peka Moau-Kxoua, oT rorozanaznHara ctpana Ha AHanypHa-111 B nentpanen Heman, moxe na ce
OIpefeny KaTo HOB THI IOCT-KOJIM3MOHHA XHIPOTEpPMallHa CHCTeMa BbB Bucokure Xmmanau, cBbp3aHa C
BHEJPSBAHETO HA MHOLICHCKH JICBKOKPAaTHH TPAaHUTH WJIH pPaBHOMEPHO 3BPHECTH IIETMAaTUTOBU Tela.
MuHepanHaTa aconManys € M3rpajeHa OCHOBHO OT XaIKONUPHUT W ITHPHT, C PA3IMYHO KOJIHIECTBO Bi-Ag
cyndunu, cynpoconn u renypunn (ONCMYTHHHT, TETPAJUMHUT, XECHUT, allKHHUT-OMCMYTHHUTOBH JIEPUBATH).
WnmeHuT, MarHeTHT, KyOaHWT, TpaHaT, PYTHJI, XJOPUT M KBapIl JOIBIBAT MHHEPAIHOTO pa3sHOoOpasue.
YecTo cpelany ca CJI0XKHH TEKCTYPHH NPOPACTBAaHMs, BKIIOYBAIIN alKUHUT, XECUT U TETPAJUMHT B IIHPOKO
BapHpaly Mponopuuy, GopMHUpal paBHOBECHH acOLMAlMM M 00pa3yBaHH B PE3yJTaT Ha cerperanus u
KpucTanusauus Ha «kamauim» Ag-Bi-Te-(S) «Tommika» B XuapoTepMaiHUTe (QIyHUIU MPU TeMIepaTypu
HaJIBHIIABAIH TEMIIEpaTypaTa Ha ToleHe Ha OucmyTa. I1o To3M HaYMH, MUHEpATH3aILHATa MOXE J]a Ce CUUTA
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3a Me30TepMaliHa pyaHa (GopManus, o0pa3yBaHa BEpOSTHO OT MarMaTHIHO-XHAPOTEPMalTHa CHCTEMA, KOSTO
¢ Omya akTHUBHA ITpe3 cpeaHust MuolieH B paiioHa Ha AHarypHa, Bucoku Xumanan.

Introduction

The formation of the Himalayan range — the
highest mountain system in the world, is a
result of the Eocene (~50 Ma) collision
between the Indian and Asian continents and
subsequent convergence, deformation and
uplift, which continue to present day. The
geology of the orogen results from complex
processes involving sedimentation, metamor-
phism, granitization, magmatism and intensive
tectonic movements over an area extending for
thousands of kilometers along strike. The
orogen is built on a complex tectonic collage
created by accretion of several terranes onto the
southern margin of the Asian continent since
the early Paleozoic (Allegre et al. 1984). Tecto-
nic activity, metamorphism and magmatism in
central Nepal occupying the central part of the
orogen have been extensively studied in the last
decades (Bordet et al. 1971; Colchen et al. 1986;
Garzanti 1999; Godin 2003; Godin et al. 2006).
High heat flows, resulting from the
collisional orogeny and associated crustal
thickening, translithospheric shearing, and
lithospheric mantle thinning, are regarded as
the main causes for hydrothermal minerali-
zation in the orogenic belts (Seltmann &
Faragher 1994). However, the metallogenesis
of collisional orogens is still poorly under-
stood, due to the lack of systematic studies on
the genetic links between collisional processes
and ore formation in collisional orogenic belts.
Recently, Hou & Cook (2009) summarized the
metallogenic features of the Tibetan collisional
orogen, hosting a variety of ore-forming
systems: (1) porphyry Cu—Mo systems related
to high-K adakitic stocks derived from the
newly-formed thickened mafic lower-crust; (2)
vein-type Sb—Au ore systems controlled by the
South Tibetan detachment system (STDs) and
the metamorphic core complex or thermal
dome intruded by leucogranite intrusions; (3)
hydrothermal =~ Pb—Zn-Ag ore  systems
controlled by the intersections of N—S-striking
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normal faults with E-W-trending thrust faults;
and (4) spring-type Cs—Au ore systems related
to geothermal activity driven by partial melting
of the upper crust. Metallogenic studies in the
central part of the Himalayan range in central
Nepal are scarce, compared to the better
studied Tibetan eastern part of the orogen (Hou
& Cook 2009 and references therein), but the
similar geological setting is a good prerequisite
to expect similar ore mineralization styles in
the area.

In this contribution, we studied moraine-
hosted Cu-Bi mineralization, exposed in the
upper part of the Modi-Khola valley, close to
the Annapurna Sanctuary, central Nepal. The
main difficulty to work on moraine-hosted
mineralization comes from the missing
information about the direct host rock such as
alteration styles, geometry and morphology of
the mineralized structures, extension of the
hydrothermal system. Based on paragenetic
sequence and mineral chemistry we discuss the
possible origin of the studied mineralization.

Geological setting and provenance of the
samples studied

Annapurna Sanctuary is located in central
Nepal and represents a large glacier circus
bordered by the mountain range of Hiunchuli,
Annapurna South, Annapurna-I and III, and
Machapuchare peaks. The narrow section of
the Modi Khola valley provides the only access
to the Annapurna Sanctuary. The samples
under investigation belong to an area in the
western banks of the Modi-Khola River, on the
southwestern flank of the Annapurna-III peak
(Fig. 1). The moraines which are constantly
piled there comprise rock fragments belonging
to the upper in relief succession. The river
crosscuts meridionally the mountain range,
forming deep section through the sequence.
The range of Annapurna peaks follows the
general E-W orientation of the tectonic
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Fig.1. Regional geological map, modified after Searle & Godin (2003). Inset shows the main units within the
Himalayan orogen (after Godin et al. 2006): Greater Himalayan sequence in grey; important structures noted
are Main Frontal thrust (MFT), Main Boundary Thrust (MBT), Main Central Thrust (MCT), and South
Tibetan detachment system (STDS). Solid red rectangle refers to the studied area

boundaries in the Himalayan orogen (Fig. 1). sequence and the Lesser Himalaya sediments.

The Modi-Khola valley cuts through three  Two Miocene north-dipping tectonic faults
laterally continuous, fault-separated tectono-  with opposite sense of shearing separate the
stratigraphic rock assemblages of the central three major tectonostratigraphic units. The
Himalayan orogen (Fig. 2; Gansser 1964; structurally lower fault is termed the Main
Bordet et al. 1971; Colchen et al. 1986; Central Thrust (MCT), and the structurally
Garzanti 1999; Yin & Harrison 2000; Godin  higher is called the South Tibetan Detachment
2003); from north to south — Tethyan system (STD - Godin et al. 2001; Godin 2003;
sediments, the Greater Himalayan metamorphic ~ Searle et al. 2003).
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Fig. 2. Geological cross-section along the Modi-Khola valley, modified after Hodges et al. (1996) and Searle
& Godin (2003). I, 11, III refer to the informal units of the Greater Himalayan metamorphic sequence (see text

for details)

The Tethyan sedimentary sequence,
presenting the northernmost lithotectonic unit
consists of continuous sedimentary succession
of Neoproterozoic to Eocene rocks being
nearly 10-km thick (Colchen et al. 1986;
Murphy & Yin 2003). It is bound to the north
by the Indus—Yarlung suture zone, presenting
the former subduction zone between the Indian
and the Asian plates and extends southwards to
the South Tibetan Detachment System. The
Tethyan sediments in the Annapurna area
consist of the Annapurna and Sanctuary
Formations with Cambrian-Ordovician age
(Godin 2003).

The Greater Himalayan metamorphic
sequence comprises the exhumed metamorphic
core of the Himalayan orogen, bounded by

14

MCT and STD (Godin et al. 2006). Composed
of kyanite and sillimanite grade gneisses the
rocks of the unit are also intruded by Miocene
leucogranites (Inger & Harris 1993). The
Greater Himalayan sequence in central Nepal is
informally subdivided into three units (Le Fort
1975, 1981; Colchen et al. 1986; Guillot et al.
1995; Searle & Godin 2003): (1) the
structurally lowest Unit I, consists of schists
and gneisses formed by metamorphism of
sedimentary succession dominated by mud-
stones and interbedded minor sandstones; (2)
Unit IT is dominantly calc-silicate and consists
of marbles and layered calc-silicate shists and
calc-silicate gneisses. This formation sits
structurally above Unit I; (3) K-feldspar augen
gneisses known as granitic Unit III intrude near



the structural top of Unit II.

The southernmost tectonostratigraphic
unit is presented by the Lesser Himalayan sedi-
mentary sequence, compiled by a succession of
Precambrian to Mesozoic unmetamorphozed
sediments to low-grade metamorphic rocks
(Stocklin 1980; Parrish & Hodges 1996; Dhital
et al. 2002).

The MCT is the structure that bounds the
base of the Greater Himalayan series. It was
mapped based on stratigraphic, lithological,
isotopic or geochronological criteria (Le Fort
1975; Colchen et al. 1986; Pécher 1989).
Thrusting the higher-grade Greater Himalayan
metasedimentary rocks onto the lower-grade
Lesser Himalayan metasedimentary rocks, the
MCT is described as a complex high-strain
shear zone affecting both the upper part of the
Lesser Himalayan sediments and the lower
section of the Greater Himalayan metamorphic
sequence.

The STD marks the top of the Greater
Himalayan series, and consists of series of
north-dipping normal faults (Searle et al.
2003). It places less-metamorphosed Tethyan
metasedimentary rocks series onto strongly-
metamorphosed Greater Himalayan series
metasedimentary rocks.

Felsic magmatism involving recycling of
continental material is known in the Lesser and
Greater Himalayan zone (Inger & Harris 1993;
Harrison et al. 1995). The heat sources of the
Tertiary metamorphism and anatexis in the
Annapurna — Manaslu region are described by
England et al. (1992) as crustal thickening and
slip on the MCT. In the succession of the
Greater Himalayan sequence, the manifestation
of such processes can be seen in the Unit III
gneisses and in the Oligocene-Miocene leuco-
granite belt (Le Fort & Rai, 1999). Hodges et
al. (1996) determined the age of leucogranite
intrusion and Unit II in the valley of Modi-
Khola and Annapurna Sanctuary as early-
Miocene. Although the leucogranites from the
high Himalayan zone are frequently found to
form some of the highest peaks, they are
structurally in the footwall of the STD and
never crosscut the fault plane to intrude in the
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overlying Tethyan sediments (Searle et al.
2008). The U-Th-Pb dating of these
leucogranites from Zanskar in the west to
Bhutan in the east show ages in the range ~24
to ~12, mostly ~22 to ~19 Ma (Searle & Godin
2003 and references therein). The Manaslu
granites, which intrude the STD plane and
reach up the Triassic sediments in the Tethyan
sequence (Guillot et al. 1995) are an exception.
Harrison et al. (1999) defined two pulses of
magmatism at 22.9 + 0.6 Ma and 19.3 + 0.3 Ma
by Pb/Th ion microprobe dating of monazites
from the Manaslu leucogranite. The Manaslu
leucogranite can be regarded as a potential
magmatic source for the studied mineralization
(see below).

In the middle part of the section along the
Modi-Khola valley pegmatites are widespread
within the calc-silicate rock sequence. Two
genetically different pegmatite types can be
distinguished — early #ype-I (fine- to equi-
granular, showing shistosity parallel to the
calc-silicate layers) and type-II (coarse-grained,
clearly cross-cutting the fype-I pegmatites and
Unit-II lithologies). Pyrite altered to limonite
can be observed in the central part of the
pegmatite bodies (Vassileva & Bonev 2008).

To our knowledge, there is no indication
for other hydrothermal activity in the area
except for the hot springs along the Modi-
Khola valley. Craw (1990) suggested that the
locally high temperature of springs presumably
reflect advective movement of deep, hot fluids
to shallow levels along highly faulted plumbing
systems and hence the presence of warm
thermal waters in the Annapurna Himal does
not indicate fluid convection in high near-
surface conductive heat flow.

Samples and analytical techniques

Three texturally different types of ore samples
have been collected by the second author
during an expedition in central Nepal in 1987.
Lately, they were prepared as polished mounts
in epoxy raisin (Fig. 3). Type-1 corresponds to
hydrothermal breccia affecting  strongly
silicified marbles (Fig. 3a). The breccia matrix



Fig. 3. Textures: a) Type-1 — hydrothermal breccia in strongly silicified marbles; b) Type-2 — quartz-
chalcopyrite veinlets and disseminations hosted by a leucocratic granitic rock; ¢) Type-3 — massive aggregate
of fine-grained chalcopyrite, pyrite and quartz. Scale bar corresponds to 5 mm. Abbreviations: (Cp)
chalcopyrite; (Py) pyrite; (Qz) quartz

consists of fine-grained quartz, pyrite and
chalcopyrite. Type-2 consists of quartz-
chalcopyrite veinlets and disseminations hosted
by a leucocratic granitic rock (Fig. 3b). Type-3
is a massive aggregate of fine-grained
chalcopyrite, pyrite and quartz (Fig. 3c). The
origin of the host rock for type-3 mineralization
was not possible to be determined, but since the
mineral composition of type-3 is similar to
type-1 (see below) it can be assumed as more
massive parts of the hydrothermal breccia of
type-1 mineralization.

Systematic reflected light microscopy was
performed prior to electron microscopy (back-
scattered electron (BSE) imaging and EDS
analyses). Electron microprobe analyses
(EMPA) and X-ray elemental mapping were
carried out using the Jeol JXA 8200
Superprobe WD/ED combined microanalyzer
at the University of Lausanne. Operating
conditions were accelerating voltage of 15 kV,
beam current of 20 nA, and beam diameter of 1
pm. Standards and radiations used were as
follows: FeS, (Fe-Ka, S-Ka), GaAs (As-La),
Sb,S; (Sb-La), Cu metal (Cu-Ka), PbS (Pb-
Ma, S- Ka), Te metal (Te-La), BirSe; (Bi-Ma,
Se-La), Ag metal (Ag-La). Counting times of
20 s on peak and 10 s on background on both
sides of the peak were used for all elements.
Overlap and matrix corrections were carried
out following the established protocol and
software in the laboratory.
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Mineral paragenesis

The paragenetic sequence observed in the
studied samples is summarized in Fig. 4. Two
stages of mineralization are defined based on
the two generations of pyrite observed. In type-
1 samples an early generation of pyrite,
intergrown with marcasite, is replaced by
ilmenite and chalcopyrite (Fig. 5a). No other

Mineral Stage-| Stage-Il

Pyrite
Marcasite
Quartz
liImenite
Magnetite
Chalcopyrite
Cubanite
Chlorite
Garnet
Rutile
Bismuthinite
Aikinite
Tetradymite
Hessite

S I S—

[—

-
(—

oOoOOOOOO

Fig. 4. Paragenetic sequence of the studied samples



Fig. 5. Reflected light microphotographs: a) Pyrite and marcasite from stage-I replaced by ilmenite and
chalcopyrite from stage-1II; b) Idiomorphic ilmenite inclusions intergrown with chlorite in chalcopyrite; c)
Idiomorphic magnetite crystal with chalcopyrite, pyrite and quartz inclusions in massive chalcopyrite; d)
Magnetite, partially replaced by chalcopyrite and quartz; e) Pyrite with abundant bismuthinite, chalcopyrite
and cubanite inclusions, associated with chalcopyrite and quartz; f) Bismuthinite intergrown with pyrite,
chalcopyrite and quartz; g) Bismuthinite intergrown with chlorite, pyrite, chalcopyrite and quartz; h)
Complex tetradymite-hessite-aikinite intergrowth in chalcopyrite; i) Cubanite-chalcopyrite inclusion in pyrite.
Abbreviations: (Aik) aikinite; (Bmt) bismuthinite; (Chl) chlorite; (Cp) chalcopyrite; (Cub) cubanite; (Hs)
hessite; (Ilm) ilmenite; (Ma) marcasite; (Mgt) magnetite; (Py) pyrite; (Ttd) tetradymite; (Qz) quartz

opaque mineral is paragenetically related to 1. The mineral assemblage common to type-1, 2
them. Most probably, the strong silicification  and 3 samples and forming the stage-II consists
of the host marble took place also during stage- of pyrite-2, quartz, ilmenite, magnetite,
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chalcopyrite and cubanite. In addition,
bismuthinite is observed in type-1 and 3
samples, while complex intergrowth textures
involving aikinite, tetradymite and hessite, as
well as single tetradymite crystals are typical
for type-2 samples. Oxides — ilmenite and mag-
netite, predominantly as idiomorphic crystals,
are associated with chalcopyrite (Figs. 5b-d).
Magnetite is sometimes partially replaced by
chalcopyrite. Pyrite-2 forms idiomorphic crys-
tals, containing numerous single or composite
inclusions of chalcopyrite, bismuthinite and
cubanite (Figs. 5¢ and 5i). Bismuthinite also
occurs as large aggregates associated with
pyrite, chalcopyrite and quartz (Figs. 5f-g and
6a). In one sample of type-3 mineralization,
bismuthinite is intergrown with quartz, zoned
garnet, rutile and chlorite (Fig. 6b). Chlorite is
a widespread mineral within the assemblage,
often intergrown with chalcopyrite and
bismuthinite (Fig. 5g). When complex inter-
growths of tetradymite, aikinite and hessite are
observed in quartz-chalcopyrite veins and
disseminations in type-2 mineralization, bis-
muthinite is absent (Fig. 5h). The proportion
between the three mineral phases changes
significantly in the different structures, sug-
gesting complex intergrowth mechanism of
formation, instead of breaking-down of a mine-
ral phase with intermediate composition (Figs.
5h, 6d-f, 7). Tetradymite also occurs as single
long-prismatic inclusions in chalcopyrite (Fig. 6¢).

Mineral compositions

Compositional data for major and trace
elements in the main minerals, forming the
studied assemblage, based on electron micro-
probe analysis, are reported in Tables 1-3.
Pyrite and marcasite (FeS,) from stage-I
are completely depleted in trace elements,
within the limits of detection of the micro-
probe, using the given analytical conditions.
Pyrite from stage-Il does not contain
significant trace elements either: only Cu, As,
Ag and Te have been detected sporadically
(Table 1), but usually these elements are in
concentrations below the detection limit too.
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Chalcopyrite (CuFeS,) is also depleted in
trace elements (Table 1). Tellurium is the only
element systematically present in concen-
trations of few hundreds of ppm. The mineral is
generally stoichiometric, showing just slight Fe
excess (Fe/Cu varies from 1.01 to 1.04). No
variation in its chemistry has been noted as a
function of the mineral association.

Cubanite (CuFe,S;) is present only as
inclusions in pyrite, and often intergrown with
chalcopyrite. It has near stoichiometric compo-
sition, with slight Cu excess over Fe (Fe/Cu
ratio 1.94-1.97). No trace elements have been
detected, except 500 ppm Te in a single
analysis (Table 1).

Bismuthinite (Bi,S3;) from both type-I and
type-III mineralizations has very similar
composition (Table 2; Fig. 8). Copper, anti-
mony and lead are constantly present in
concentrations of 0.67-1.55 wt.%, 0.22-0.60
wt.%, and 2.01-4.52 wt.%, respectively. Iron,
selenium and tellurium were also detected,
usually in concentrations of few hundreds of
ppm. Silver was sporadically detected (in 7 out
of 40 analyses) and its concentrations vary
between 700 and 900 ppm, exceptionally
reaches 1300 ppm. No significant correlation
has been observed between major and trace
elements, or between different trace elements.

Tetradymite  (Bi,Te,S) occurring —as
individual inclusions in chalcopyrite and as
part of the complex intergrowth textures with
hessite and aikinite differs in minor element
concentrations. The chalcopyrite-hosted tetra-
dymite inclusions are enriched in Pb (up to
11.54 wt.%; Fig. 9a), compared to the
tetradymite from the complex intergrowths (up
to 1.44 wt.% Pb, usually <lwt.% Pb). The
other trace elements have almost constant
concentrations in both types of tetradymite; Fe
(usually <Iwt.%), Cu (0.3-1.7 wt.%), Se
(~1wt.%). Silver is also present, generally <1
wt.%, but in some cases its concentration can
reach up to 17 wt.% (Table 3). Iron and copper
in both types of tetradymite show strong
positive correlation (Fig. 9b), which differs
from the 1:1 line, thus excluding possible
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Fig. 6. Back-scattered electron (BSE) images: a) Large bismuthinite crystals in chalcopyrite; b) Bismuthinite
intergrown with quartz, garnet, chlorite and rutile, in association with pyrite and chalcopyrite; ¢) Prismatic
single crystals of tetradymite as inclusions in chalcopyrite; d-f) Complex tetradymite-hessite-aikinite
intergrowth textures; note the highly variable proportion of the three phases. Abbreviations: (Aik) aikinite;
(Bmt) bismuthinite; (Chl) chlorite; (Cp) chalcopyrite; (Cub) cubanite, (Grt) garnet; (Hs) hessite; (Py) pyrite;
(Rt) rutile; (Ttd) tetradymite; (Qz) quartz
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Fig. 7. X-ray elemental mapping of a complex tetradymite-hessite-aikinite intergrowth. Abbreviations: (Aik)
aikinite; (Cp) chalcopyrite; (Hs) hessite; (Ttd) tetradymite; (Qz) quartz
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contamination from the host chalcopyrite
during the microprobe analyses.

The compositions of aikinite-bismuthinite
derivates, occurring as part of the complex
intergrowth with hessite and tetradymite in
type-1I mineralization, plot along the aikinite-
bismuthinite series on the Cu,S-Bi,S;-Pb,S,
diagram (Fig. 8). The analytical points indicate
aikinite-friedrichite, friedrichite-hammarite,
krupkaite-gladite, and gladite-bismuthinite
intermediate compositions, according to the
compositional fields defined by Makovicky &
Makovicky (1978) and Mozgova et al. (1990).
Lead concentrations are often different even
within a single intergrowth texture, as revealed
by X-ray elemental mapping (Fig. 7) and corre-
lates with Bi, indicating Pb-Bi substitution.
Microprobe analyses (Table 3) systematically
show very high concentrations of Ag (up to
12.79 wt.%) which most probably is due to the
presence of submicroscopic Ag-bearing phase,
rather than to contamination from the neigh-
boring hessite. The small size of the analyzed
crystals was the major limiting factor during
the microprobe sessions. However, positive 1:1
correlation between Cu and Pb (Fig. 9¢) and
negative 1:1 correlation between Cu and Bi
(Fig. 9d) is registered for the studied minerals,
as it is expected from the general substitution
scheme Cu' + Pb*" < 0 + Bi’" in the aikinite-
bismuthinite series (Makovicky & Makovicky
1978).

Hessite (Ag;Te) is often the dominant
phase in the complex intergrowth textures (Fig.
6e-f). The mineral always contains minor
amount of Fe, Cu, Pb, Bi, S and Se, usually <1
wt.% (Table 3). The observed strong Te —
(S+Se) correlation (Fig. 9e) suggests the
following substitution mechanism in the anions
S* + Se” > 2Te”. No correlation between the
other trace elements has been observed.
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Discussion

Mineralogy of the Cu-Bi-Pb-Ag-Te
assemblage

The mineralization described in the different
types of samples from the central part of the
Modi-Khola valley has very similar Cu-Bi-Pb-
Ag-Te geochemical signature, which is the
main argument to relate them to one and the
same hydrothermal system. The main differ-
ence between the two types of analyzed
samples comes from the Bi-bearing minerals in
the paragenesis. Bismuthinite is the only Bi-
bearing phase in type-I and III mineralization,
while in type-II bismuthinite is absent and
complex tetradymite-hessite-aikinite  inter-
growths occur instead. Despite the common
presence of Cu and Pb in the bismuthinite,
breakdown of a phase with similar composition
could not explain the formation of the
tetradymite-hessite-aikinite intergrowth tex-
tures. Silver was detected as a very minor
component of bismuthinite, further lowering
the chance of Ag-bearing phases to have
formed by exsolution. In addition, highly
variable phase proportions between the three
minerals in the textures also favor a simple
intergrowth mechanism of formation. Thus, the
two textural types of ore most probably belong
to the same mineralization system, but
represent spatial variations.

Similar to the studied complex inter-
growth textures, involving Bi-, Pb-, and Ag-
bearing sulphides, sulphosalts and tellurides
have been described in different geological
contexts — in polymetallic mesothermal veins
of the Bakadjik deposit, Bulgaria (Breskovska
et al. 1984); veins in carbonate-hosted high-
temperature polymetallic replacement bodies of
the Ardino deposit, south Bulgaria (Bonev &
Neykov 1990); in the stringer zones of
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volcanogenic massive sulphide deposits of the
Iberian Pyrite Belt (Marcoux et al. 1996); in
polymetallic veins of the Larga hydrothermal
system, Metaliferi Mountains, Romania (Cook
& Ciobanu 2004). In most of the deposits cited
above fluid inclusion microthermometry and/or
mineral stabilities indicate mesothermal condi-
tions of ore formation, typically in the interval
450-350°C. In such conditions as suggested by
Cook & Ciobanu (2004) Ag- and Bi-tellurides
were extracted from fluids as Ag-Bi-Te-(S)
“melts” at temperatures above the melting
point of bismuth (271°C), and formed equilib-
rium assemblages with the bulk composition of
the initial “droplet”. In addition, the speciation
of  Bi-tellurides, with  Bi/Te(+Se+S)<I
(tetradymite) is consistent with a pyrite-
buffered environment.

Possible genesis of the studied
mineralization

We can assume mesothermal conditions of ore
formation for the studied moraine-hosted Cu-Bi
mineralization from the southwestern flank of
Annapurna-III, based as well on the mineral
paragenesis: high-temperature minerals such as
ilmenite, magnetite, garnet, rutile, and cubanite
are constantly present. Because of the small
size of the quartz crystals associated with this
mineralization, fluid inclusion microthermo-
metry was not possible to be applied in order to
estimate the P-T conditions of formation. The
lack of any data on the hydrothermal alteration
associated with the mineralization makes also
difficult the genetical interpretation. However,
taking into account the nature of the host rock
(hydrothermal breccia, crosscutting strongly
silicified marble and veinlets and dissemination
affecting leucocratic magmatic rock) two
possible scenarios can be proposed, both
related to a magma-derived hydrothermal
system. The mineralization can be genetically
related to leucogranite intrusions, emplaced
along the South Tibetan detachment fault (Fig.
1) and affecting the marbles of the footwall of
the structure (Fig. 2). The Manaslu granites
(Guillot et al. 1995) intruding the STD plane in
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the studied area are the most probable source of
the fluids. To the east of the Annapurna range,
in the Tibetan plateau, leucogranite intrusions
are also genetically related to porphyry Cu-Mo
and Cu-Au systems of Miocene age (Hou et al.
2004; 2009). The equigranular pegmatite
bodies, which are abundant in the area and
crosscut the sequence of Unit-II (Fig. 2), can be
regarded as a second potential source of
magmatic fluids. Supporting the second hypo-
thesis, Vassileva & Bonev (2008) described
highly oxidized (over pyrite) pegmatite bodies
in the middle part of the Modi-Khola valley,
suggesting hydrothermal activity related to the
emplacement of the latter.

Conclusions

The mineralogical and geochemical Cu-Bi-Ag-
Te signature of the breccia-hosted and
disseminated mineralization found in loose
boulders of silicified marbles and leucocratic
magmatites in the central part of the Modi-
Khola valley, on the southern flank of the
Annapurna-III, suggest dominantly magmatic
source for the mineralizing fluids. As suggested
by Craw (1990) the thermal anomaly in the
Annapurna Himal associated with rapid
Himalayan uplift along the MCT and with the
emplacement of orogenic granites along the
STD, was a Miocene feature and is not related
to the present day warm springs which are
abundant in the Annapurna range.

For the first time high-temperature
hydrothermal mineralization is described in the
studied area. The mineralogical and geoche-
mical features of this formation allow us to
define it as a new type of ore-forming system
in the post-collisional metallogenic context of
the high Himalaya. Hou & Cook (2009)
defined in the Tibetan orogen another vein type
Sb-Au ore system in a similar structural
position — controlled by the STD and the
metamorphic core complex or thermal dome
intruded by leucogranite intrusions. To unravel
the real genesis of this mineralization, stable
isotope and fluid inclusions studies are needed.
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