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Calcium Hydroxide Leaching through a Well-Buffered Volcanic-
Ash Soil with pH Dependent Charges  

D. Chen, N. Toride, & D. Antonov 
Graduate school of Bioresources, Mie University, Tsu, Mie, Japan  

ABSTRACT: Soils have a buffering capacity to moderate pH changes in soil solutions because 
of the pH dependent charges. A variable charge model is proposed assuming dissociation and 
attachment reactions of hydrogen with the hydroxyl reactive groups in soils to evaluate the soil 
buffering capacity. A titration experiment is conducted for a volcanic-ash soil by adding acid 
and alkaline solutions to estimate parameter values for the variable charge model using the 
PHREEQC geochemical database code (Parkhurst and Appelo, 1999). Calcium hydroxide 
leaching process through the well-buffered volcanic-ash soil is then simulated in accordance 
with the proposed variable charge model using a numerical code HP1 (Jacques and Šimůnek, 
2005), which couples HYDRUS-1D for flow and transport and PHREEQC for chemical reac-
tions. When we take into account a suitable buffering capacity based on the variable charge 
model, HP 1 is a promising tool for quantitative evaluation of the acid or alkaline contaminant 
transport though well-buffered soils. 

1 INTRODUCTION 
 
Construction sludge is usually dehydrated with a coagulant material such as lime hydrate for re-
cycling the sludge as a soil foundation. A volcanic-ash soil is often used at the bottom of the 
landfill sites because of its high buffering capacity to minimize adverse effects of high pH solu-
tions of the coagulant material to the surrounding area. For evaluating a soil buffering capacity, 
it is necessary properly to take into account the soil variable charges  

The variable cation exchange capacity (CECv) and anion exchange capacity (AECv) of vol-
canic-ash soils for different pH and electrolyte concentrations have been experimentally deter-
mined by Japanese soil scientists (Wada and Ataka, 1958; Wada, 1980). Okamura and Wada 
(1983) proposed a general regression equation to describe the observed pH dependent CEC and 
AEC. Although the empirical regression formula can be used to predict the CECv and AECv at 
certain pH and concentration, it is necessary to describe explicit reactions of hydrogen or hy-
droxyl ions with soil hydroxyl reactive groups to predict transport of acid or alkaline solutes in 
soils.  

In this study, a variable charge model is firstly proposed to describe the pH dependent 
charges and to evaluate the soil buffering capacity. Then, a titration experiment is conducted for 
a volcanic-ash soil by adding acid and alkaline solutions to the soil-water suspension. Parameter 
values for the variable charge model are determined based on the titration curve using the 
PHREEQC geochemical database code (Parkhurst and Appelo, 1999). Finally, a calcium hy-
droxide leaching process through the volcanic-ash soil is simulated in accordance with the pro-
posed variable charge model. A numerical code HP1 (Jacques and Šimůnek, 2005) is used, 
which couples the water flow and solute transport code HYDRUS-1D (Šimůnek et al., 2005) 
and the geochemical code PHREEQC.  
 



 

 

2 VARIABLE-CHARGE MODEL 
 

A hydrogen ion dissociates from the hydroxyl reactive group j at the edge of clay minerals 
(Soilj ⋅ OH) depending on the soil solution pH. Simultaneously, exchangeable cations M+ from 
the solution phase are electrically adsorbed on the surface (Soil j ⋅O−M+) because of the electric-
al neutrality. The dissociated hydrogen forms water with a hydroxyl ion. 
 
  (1) 2Soil OH OH M Soil O M H O− + − +⋅ + + ⋅ +j j
 
We assume the above reaction does not depend on cation species but simply depends on the to-
tal cation concentrations described as  
 
  (2) M Mν

1

+ +

=

⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣∑
MN

i
i

⎦ 
where NM is the number of cation species, ν is the valency, and [ ] is the ion concentration in 
terms of moles of charges. We assume higher valency cations such as Ca2+ also behave similar 
as a monovalent ion in accordance with the moles of charges. Hence we denote Ca2+ in Eq. (1) 
as Ca1/2

+. The equilibrium constant for the dissociate reaction Kvc-j is given by 
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An ion exchange between M+ and H+ takes place according to the following exchange reaction: 
 
  (4) So iil O M H So l O H M− + + − +⋅ + ⋅ +j j
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where KH-M is the exchange constant between M+ and H+. We note that O−H+ denotes the ex-
changeable hydrogen whereas OH is the hydroxyl group as shown in Eq. (1). It is possible to 
further determine a specific exchangeable cation concentration for mixed cation solutions if the 
corresponding exchanges reaction are defined. Since the hydroxyl group may have maximum 
capacity of dissociation, the parameter Svc-j (mmolc/g soil) is defined for the total amount of the 
surface reactive group: 
 
  (6) 
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The sum of exchangeable M+ and H+ can be regarded as the amount of negative charges, which 
corresponds to the CECv, for the reaction group as a result of the hydrogen dissociation.   

When the soil consists of Nvc reaction groups, the sum of exchangeable cations for all reac-
tion groups is equal to the variable cation exchange capacity CECv for the soil. Substituting Eqs. 
(3) and (5) into Eq. (6) leads to 
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Parameters KH-M, Kvc-j, and Svc-j are strictly specific for any different type of soil. They could be 
determined from a titration experiment as shown in the next chapter. The variable anion capaci-
ty AEC v can be also derived as similar to the CECv as described above.  

3 TITRATION EXPERIMENT 
 
A titration experiment was conducted to determine parameters for the variable charge model. A 
soil sample (ms = 5 g) was firstly mixed with distilled water of V0=150 cm3. After adding ΔV 
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cm3 of a NaOH solution (c0 mmolc/cm3), pH of the supernatant solution was measured. The 
mass conservation for Na+ leads to: 
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Substituting (7) into (8) and assuming [Na+] is equal to [OH-] results in 
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where ΔOH- (=ΔNa+) is the amount of added NaOH per unit weight of soil. The pH of the su-
pernatant solution can be determined as a function of ΔOH- according to Eq. (9).  

The parameters Kvc-j and Svc-j for the variable charge model as well as KHM for the cation ex-
change were determined based on the observed titration data (Fig. 1). When the soil consists of 
two types of reaction groups (Nvc = 2), the fitted curve could reasonably agree well with the ob-
served data. The corresponding variable cation exchange capacity CECv as function of solution 
pH for three ionic concentrations is calculated with Eq. 7 for the optimized parameter values 
(Fig. 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4 CALCIUM HYDROXIDE LEACHING 

Calcium hydroxide leaching transport through a volcanic ash soil is numerically evaluated. The 
soil is uniformly packed at a bulk density of 0.53 g/cm3 in a 20 cm length column (Fig. 3). A 
calcium hydroxide solution of 10 mmolc/cm3 is applied to the saturated solute-free soil with 
steady-state water flux of 30 cm/h. The volcanic-ash soil has a charge property as described in 
Fig. 1. 

Transport of Ca2+ is described with the convection dispersion equation: 
 
  (10) 
 
where CCa is the Ca2+aqueous concentration (mmolc/cm3), ρb is the soil bulk density (g/cm3), θ  
is the volumetric water content (−), D is the hydrodynamic dispersion coefficient (cm2/h), Jw is 
the volumetric flux (cm/h), and QCais the Ca2+ adsorbed concentration (mmolc/g soil) described 
with the variable charge model: 
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Figure 2. Calculated cation exchange capacity 
CECv based on optimized fitted parameters to 
an observed titration curve. 

Figure.1. A titration curve for a volcanic-ash 
soil. Solid line is fitted with Eq, (9). 
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Because of the electrical neutrality of the soil solution, [OH-] is assumed to be equal to [Ca+

1/2] 
+ [H+]. Furthermore, for an alkaline condition, neglecting [H+] leads to [OH-] ≈ [Ca+

1/2], which 
means the solution pH ([OH-]) can be solely determined from [Ca+

1/2].  
The numerical calculation for the Ca2+ transport through the profile is carried out using the 

HP1 code (Fig. 4): i.e., water flow and nonreactive solute transport parts in Eq. (10) are eva-
luated in HYDRUS-1D, and chemically reactive part QCa in Eq. (10) is evaluated in PHREEQC 
based on the variable charge model with the optimized Kvc-j-M, Svc-j-M and KH-M for Eq. (11). 
Then, using the assumption of [OH-] ≈ [Ca+

1/2] and the general equation of pH, the pH distribu-
tion through the profile is also evaluated (Fig. 5). Finally, the CECv in the soil profile as a func-
tion of Ca2+ according to Eq. (7) is calculated (Fig. 6).   
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 Figure. 4. Calculated Ca2+ concentration 

profiles. 
Figure. 3. Principle scheme of calcium 

hydroxide leaching experiment.  
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 Figure. 5. Calculated pH profiles during 

leaching through the soil profile. 
Figure. 6. Calculated variable cation ex-
change capacity through the soil pro-
file. 

 
 
 
 
 



 

 

It takes 160 hours (300 pore volume) Ca2+ reaches at the bottom of the column because of 
high buffering capacity of the volcanic-ash soil (Fig. 4). The calculated pH in the soil column 
(Fig. 5) is in correspondence with the experimental obsevations. As the CECv is a function of 
pH and the cation concentration according to Eq. (7), increases in the Ca2+ concentration and pH 
results in the increase in the CECv as shown in Fig. 6. With taking into account a suitable buf-
fering capacity based on the variable charge model, HP 1 is a promising tool for quantitative 
evaluation of the acid or alkaline contaminant transport though well-buffered soils.  
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